视觉SLAM——三位空间刚体运动复习(一)

  1. 刚体运动位姿包括两方面:
    . 位置 ( x , y , z ) (x, y, z) (x,y,z)-----点
    . 姿态(朝向)-------向量

  2. 坐标的具体取值一是和向量本身有关,一是和坐标系的选取有关。
    线性坐标的基 ( e 1 , e 2 , e 3 ) (e_1, e_2, e_3) (e1,e2,e3),那么向量a 在这组基下的坐标为: a = [ x , y , z ] [x, y, z] [x,y,z] [ a 1 , a 2 , a 3 ] T [a_1, a_2, a_3]^T [a1,a2,a3]T

  3. 内积(cos)描述向量间投影关系,外积(sin)的方向垂直与两个向量,大小是两个向张成四边形的有效面积。外积可用反对称矩阵表示,例a X b 可以表示成矩阵与向量的乘法a ^ b;外积只对3维向量存在定义,可用来表示向量旋转

  4. 欧式变换 单位正交基 ( e 1 , e 2 , e 3 ) (e_1, e_2, e_3) (e1,e2,e3),经过一次变换变成了 ( e 1 ′ , e 2 ′ , e 3 ′ ) (e_1^{'}, e_2^{'}, e_3^{'}) (e1,e2,e3);对于同一个向量 a 在两个坐标系下的坐标为 [ a 1 , a 2 , a 3 ] T [a_1, a_2, a_3]^T [a1,a2,a3]T [ a 1 ′ , a 2 ′ , a 3 ′ ] T [a_1^{'}, a_2^{'}, a_3^{'}]^T [a1,a2,a3]T,所以有: [ e 1 , e 2 , e 3 ] [e_1, e_2, e_3] [e1,e2,e3] [ a 1 , a 2 , a 3 ] T [a_1, a_2, a_3]^T [a1,a2,a3]T = [ e 1 ′ , e 2 ′ , e 3 ′ ] [e_1^{'}, e_2^{'}, e_3^{'}] [e1,e2,e3] [ a 1 ′ , a 2 ′ , a 3 ′ ] T [a_1^{'}, a_2^{'}, a_3^{'}]^T [a1,a2,a3]T, 等式两边同时左乘 [ e 1 , e 2 , e 3 ] [e_1, e_2, e_3] [e1,e2,e3],就得到a = R a ′ a^{'} a , 矩阵R是由两组基的内积组成,刻画了旋转前后同一个向量的坐标变换关系,称为旋转矩阵。旋转矩阵特殊性质行列式为1的正交矩阵。SO(n) 称为特殊正交群,由于 R R R 是正交矩阵, 所以逆和转置等价,都表示旋转。即 a ′ = R − 1 a = R T a a^{'} = R^{-1}a = R^Ta a=R1a=RTa
    (1) S O ( n ) = { R ∈ R n ∗ n ∣ R R T = I , d e t ( R ) = 1 } SO(n)=\{ R \in \Bbb {R}^{n*n} | RR^T = I ,det(R) = 1\}\tag1 SO(n)={RRnnRRT=I,det(R)=1}(1)

  5. 加上平移就可以在欧式变换中表示相机的运动了,即 a ′ = R a + t a^{'} = Ra + t a=Ra+t, t 为相机平移。上式多次计算会变得复杂,所以引入齐次坐标概念,在三维相量的末尾加1,使其变为四维。引入特殊欧式群SE3。同样该矩阵的逆表示反向的变换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值