视频前景检测(GMM模型)

本文介绍了使用高斯混合模型(GMM)进行视频前景检测的方法。通过为每个像素建立K个高斯模型,根据权重和标准差的比值排序,并选取前B个模型进行前景背景判断。当帧中像素不满足前B个高斯模型时,标记为前景,并利用学习率更新模型权重。
摘要由CSDN通过智能技术生成

在视频的前景检测当中常用的方法是用高斯混合模型(GMM)对背景进行建模。当一帧到来时,判断前景部分,同时更新背景的模型。

高斯混合模型用于背景的建模时,图像的每一个像素的像素值都用K个高斯模型来模拟,因此在某一时刻t,某一个像素的值的概率密度函数为:


其中,w_i,t 为一个高斯模型的权重,而一个高斯模型的概率密度函数为(为简化起见,这里的高斯分布为一维的,也就是说,每一帧的图像都是灰度图):

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值