在视频的前景检测当中常用的方法是用高斯混合模型(GMM)对背景进行建模。当一帧到来时,判断前景部分,同时更新背景的模型。
高斯混合模型用于背景的建模时,图像的每一个像素的像素值都用K个高斯模型来模拟,因此在某一时刻t,某一个像素的值的概率密度函数为:
其中,w_i,t 为一个高斯模型的权重,而一个高斯模型的概率密度函数为(为简化起见,这里的高斯分布为一维的,也就是说,每一帧的图像都是灰度图):
在视频的前景检测当中常用的方法是用高斯混合模型(GMM)对背景进行建模。当一帧到来时,判断前景部分,同时更新背景的模型。
高斯混合模型用于背景的建模时,图像的每一个像素的像素值都用K个高斯模型来模拟,因此在某一时刻t,某一个像素的值的概率密度函数为:
其中,w_i,t 为一个高斯模型的权重,而一个高斯模型的概率密度函数为(为简化起见,这里的高斯分布为一维的,也就是说,每一帧的图像都是灰度图):