CNN(卷积神经网络)在视频动作分类中的应用

本文总结了CNN在视频动作分类的应用,重点介绍了Stanford的《Large-scale Video Classification with Convolutional Neural Networks》和NIPS的《Two-Stream Convolutional Networks for Action Recognition in Videos》。文章探讨了不同CNN结构,如单帧、后期融合、早期融合和慢速融合,并提出多分辨率CNN以减少参数和加速训练。此外,还阐述了两流卷积网络,通过独立的CNN模型分别处理静态图像和光流信息,以增强动作识别能力。
摘要由CSDN通过智能技术生成

简介

最近接触了一些卷积神经网络的只是以及其在视频动作分类中的应用,本文对其进行一下小结。CNN在图像任务,比如ImageNet上取得很好的效果,但是在视频相关的任务中还没有太大的进展。取得比较好效果的有两篇文章,一篇是Stanford发表在CVPR2014上的《Large-scale Video Classification with Convolutional Neural Networks》,另外一篇是NIPS2014上的《Two-Stream Convolutional Networks for Action Recognition in Videos》,下面分别介绍一下两篇文章的大致内容:

Large-scale Video Classification with Convolutional Neural Networks

在这篇文章中我认为其主要的贡献有两点:一个是实验了不同的卷积神经网络的结果,从而在CNN中表示出视频的时间信息,二是介绍了一种multi-resolution的CNN结构,从而减少了网络的参数,加速了训练的时间。

Fusion Method

这部分内容比较了如图所示的四种不同的CNN结构:

这里写图片描述

  1. single frame:就是把一帧帧的图像分别输入到CNN中去,和普通的处理图像的CNN没有区别。
  2. late fution:把相聚L的两帧图像分别输入到两个CNN中
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值