使用OpenCV与PySide(PyQt)的视觉检测小项目练习

        OpenCV 提供了丰富的图像处理和计算机视觉功能,可以实现各种复杂的图像处理任务,如目标检测、人脸识别、图像分割等。

        PyQt(或PySide)是一个创建GUI应用程序的工具包,它是Python编程语言和Qt库的成功融合。Qt库是最强大的GUI库之一。Qt的快速界面编辑工具Qt Designer提供了直观的可视化界面设计环境,通过拖拽和放置控件来设计界面,简化了界面设计的过程。PyQt提供了丰富的控件库,同时支持多种媒体文件的展示。尤其是PyQt的信号与槽的刷新机制提供了高效和可靠的信号响应机制。

        下面以一个实际的项目搭建过程为demo,尝试联合使用以上两个库,力争各尽所长。原则上,前端的界面显示和操作交给PySide,后台的图像处理交给OpenCV。

这是一个显微拍照画面内的轮廓识别和尺寸测量、数量统计项目。

一、显示界面框架搭建

1、主界面

主界面利用Qt Designer 制作,命名为main_window.ui并保存。

 主按钮站:

应该达到的运行效果:

2、主界面的按钮

 按钮有两种:

第一种是“点动”式的,图标为双状态,例如“新建项目”按钮。其样式表为:

第二种是“翻转“式的,每点击一次状态反转,即:可以反转”checked“状态。按钮图标为三个状态,例如“局部放大”按钮。其样式表为: 

 这种按钮,自定义了一个特性:activated来取代系统自带的checked,当这个特性activated="true"时,改变按钮的背景色。当然也可以使用系统自带的checked特性来实现同样的功能,这里的目的主要是练习一下 按钮的自定义特性的应用。

使用系统自带的checked特性:

两种方法在显示上的微妙差别如下:左边是自定义特性的,右边是使用系统自带的checked特性来实现的。区别在于系统自带的checked特性显示的边框是pressed,即按下时的边框特性。

3、阶梯渐变的色条

主界面的颜色样例条,自定义脚本,命名为GradientLabel.py:

from PySide6.QtGui import QPainter, QColor, QLinearGradient
from PySide6.QtWidgets import QMainWindow, QLabel, QVBoxLayout, QWidget
from PySide6.QtCore import Qt


class GradientLabel(QLabel):
    
    # 定义颜色
    def def_colors(self, begin_color, mid_color, end_color):
        self.begin_color = begin_color
        self.mid_color = mid_color
        self.end_color = end_color

    # 重新定义绘画事件
    def paintEvent(self, event):
        painter = QPainter(self)
        painter.setRenderHint(QPainter.Antialiasing)

        gradient = QLinearGradient(0, 0, 0, self.height())
        gradient.setColorAt(1, self.end_color)
        gradient.setColorAt(0.5, self.mid_color)
        gradient.setColorAt(0, self.begin_color)

        painter.fillRect(self.rect(), gradient)


class MyMainWindow(QMainWindow):
    def __init__(self):
        super().__init__()

        central_widget = QWidget(self)
        self.setCentralWidget(central_widget)

        layout = QVBoxLayout(central_widget)

        gradient_label = GradientLabel(self)
        begin = QColor(255, 100, 0)
        mid = QColor(8, 180, 8)
        end = QColor(80, 80, 255)
        gradient_label.def_colors(begin, mid, end)

        gradient_label.setAlignment(Qt.AlignCenter)
        layout.addWidget(gradient_label)

        self.setWindowTitle("Gradient Label Example")


if __name__ == "__main__":
    import sys
    from PySide6.QtWidgets import QApplication

    app = QApplication(sys.argv)
    window = MyMainWindow()
    window.show()
    sys.exit(app.exec())

 运行效果:

 将自定义脚本保存在主程序脚本同目录,并在Qt Designer 将颜色样例条”提升为“该自定义脚本。

4、图像显示区的自定义脚本

 这是一个QLabel,其显示的内容为QPixmap。脚本逐步再完善。

二、主程序脚本框架搭建 

1、目录结构

 JSON:存放json文件

MEDIA:存放媒体文件

PROJECT:工程文件

PYS:存放脚本

SRC:按钮图标等源文件

UIS:存放显示界面文件

2、编写初步的主程序框架

 首先要使用pyuic和pyrcc工具将图像资源转换成py文件并与主程序脚本放置在同一文件夹下,然后编写主程序脚本:

# 这是一个图像处理小应用的示例脚本。

# encoding: utf-8
import json
import sys

from PySide6.QtCore import QObject
from PySide6.QtWidgets import QApplication, QMainWindow

import main_window_rc  # 导入主画面


# 定义主窗口
class MainWindow(QMainWindow, main_window_rc.Ui_MainWindow):
    def __init__(self):
        super().__init__()


# ################公用的作业函数#############################
class Jobs:
    @staticmethod
    # 读取JSON文件,分配参数
    def read_json():
        with open('../JSON/setting.json', 'r', encoding='utf-8') as file_json:
            ui.json_data = json.load(file_json)
            ui.settings = ui.json_data['setting']  # 项目参数的定义

    @staticmethod
    # 系统的初始化
    def start_todo():
        pass

    # 退出前的操作
    @staticmethod
    def before_quit():
        with open('../JSON/setting.json', 'w') as file:  # 保存json文件
            json.dump(ui.json_data, file, indent=4)


# ################图像处理的过程函数#############################
def Image_processing(steps):
    for step in steps:
        # 系统的初始化
        if step == 'start':
            pass

        # step0,步骤0
        if step == 0:
            pass
            continue

        # step1,步骤1
        if step == 1:
            pass
            continue


        # step2,步骤2
        if step == 2:
            pass
            continue


# ###########################信号的连接和槽函数####################################
def signal_slot():
        # #####################主窗口的信号和槽####################################
    pass

# #############################主程序###################################
if __name__ == '__main__':
    app = QApplication(sys.argv)


    # #######################项目级别的定义###################################
    class UI(QObject):  # 将项目定义为QObject,用来管理项目级别的信号和变量
        # ###########__init__###############
        def __init__(self):
            super().__init__()


    # ########################本项目的实例化###################################
    ui = UI()  # 项目实例化

    # ########################实例化画面#################################
    window1 = MainWindow()  # 主画面实例化

    window1.show()  # 显示画面
    window1.setupUi(window1)  # 画面初始化

    Jobs.start_todo()  # 系统初始化
    signal_slot()  # 信号与槽的定义

    app.aboutToQuit.connect(Jobs.before_quit)  # 退出系统之前的操作

    sys.exit(app.exec())

 本阶段运行截图:

三、编写各个功能脚本

 1、提高清晰度的相机

原理:通过连续拍摄多张照片并求像素平均值的方法来减少图像噪点,获得较为清晰的照片。

 脚本FilterCamera.py:

from PySide6.QtCore import QObject, QTimer
from PySide6.QtWidgets import QApplication

import cv2
import numpy as np
import threading
import sys


class FilterCamera:
    def __init__(self, cap, frame, num=5):
        self.cap = cap
        self.num = num
        frame_float = frame.astype(float)
        self.frames = [frame_float] * self.num
        self.sum_frame = sum(self.frames)
        self.filtered_frame = self.sum_frame / self.num

    def frame_out(self):
        r, f = self.cap.read()
        if r:
            frame_float = f.astype(float)
            self.sum_frame -= self.frames[0]
            self.sum_frame += frame_float
            self.filtered_frame = (self.sum_frame / self.num).astype(np.uint8)
            self.frames = self.frames[1:] + [frame_float]
            return self.filtered_frame
            # cv2.imshow('Average Frame', self.average_frame)


def show_frame(cam):
    f = cam.frame_out()
    cv2.imshow('Average Frame', f)

# #############################主程序###################################
if __name__ == '__main__':
    app = QApplication(sys.argv)

    video_timer = QTimer()
    cam0 = cv2.VideoCapture(0)
    ret, frame = cam0.read()

    if ret:
        filter_cam = FilterCamera(cam0, frame)
        video_timer.start(50)
        video_timer.timeout.connect(lambda:  show_frame(filter_cam))

        sys.exit(app.exec())

 2、关于相机的查找、激活、刷新视频

相机的相关功能操作均在主程序脚本内完成。当前阶段的主脚本:

# 这是一个图像处理小应用的示例脚本。

# encoding: utf-8
import json
import sys
import threading

import cv2
from PySide6.QtCore import QObject, QTimer
from PySide6.QtGui import QColor, QImage, QPixmap
from PySide6.QtWidgets import QApplication, QMainWindow

import main_window_rc  # 导入主画面
from FilterCamera import FilterCamera


# 定义主窗口
class MainWindow(QMainWindow, main_window_rc.Ui_MainWindow):
    def __init__(self):
        super().__init__()


# ################公用的作业函数#############################
class Jobs:
    @staticmethod
    # 查找本地可以用的相机
    def find_camera(max_camera=3):
        # 先禁用相机按钮和新建按钮
        window1.btn_capture.setEnabled(False)
        window1.btn_capture.setToolTip('正在查找和初始化相机')

        window1.btn_new.setEnabled(False)
        window1.btn_new.setToolTip('正在查找和初始化相机')

        # 如果没有查到相机
        def no_camera():
            window1.btn_capture.setToolTip('未查找到可用相机')
            window1.btn_new.setToolTip('未查找到可用相机')
            ui.th1.stop()  # 结束查找相机的进程

        # 查找相机的定时器,超过这个时间没有查找到相机就认为没有相机
        ui.timer1_find_camera = threading.Timer(30, no_camera)
        ui.timer1_find_camera.start()
        # 项目内所有的相机
        ui.cameras = []
        cameras = [cv2.VideoCapture(x) for x in range(max_camera) if cv2.VideoCapture(x).isOpened()]  # 可用相机的列表

        for cam in cameras:
            ret, frame = cam.read()
            if ret:
                filter_camera = FilterCamera(cam, frame)  # FilterCamera是自定义的滤波相机,连续拍摄多张图片并平均,用以提高像质
                ui.cameras.append(filter_camera)
        # 如果找到了相机
        if ui.cameras:
            window1.comboBox_cameras.addItems([f'相机{x}' for x in range(len(ui.cameras))])  # 更新相机选择组合框的下拉列表
            window1.btn_capture.setToolTip('实时影像/拍照取样')
            window1.btn_capture.setEnabled(True)
            window1.btn_new.setToolTip('新建检测项目')
            window1.btn_new.setEnabled(True)
            ui.timer1_find_camera.cancel()  # 结束查找相机的定时器
            Jobs.activate_camera(0)  # 激活相机0

    @staticmethod
    # 按照给定的序号激活相机
    def activate_camera(i):
        ui.activated_camera = ui.cameras[i]  # 激活的相机

    @staticmethod
    # 读取JSON文件,分配参数
    def read_json():
        with open('../JSON/setting.json', 'r', encoding='utf-8') as file_json:
            ui.json_data = json.load(file_json)
            ui.settings = ui.json_data['setting']  # 项目参数的定义

    @staticmethod
    # 将OpenCV格式的图像转换为PySide格式,并在小部件上显示
    def img2Widget(img, widget):
        img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # 转换 BGR 到 RGB
        # 转换图像到QT的QImage格式
        img_height, img_width, channels = img_rgb.shape  # 获取形状
        bytes_per_line = channels * img_width  # 每行字节数
        q_img = QImage(img_rgb.data, img_width, img_height, bytes_per_line, QImage.Format_RGB888)  # 转换成QImage格式

        pixmap = QPixmap.fromImage(q_img)  # 转换成QPixmap格式
        widget.set_src(pixmap)  # 将图像设置为部件的源图像

    @staticmethod
    # 刷新视频帧
    def update_frame():
        if ui.video_play and ui.activated_camera:  # 是否实时播放视频
            ui.orig_img = ui.activated_camera.frame_out()  # 从激活的相机获取图像数据
            ui.src_img = ui.activated_camera.frame_out()  # 从激活的相机获取图像数据
            Jobs.img2Widget(ui.src_img, window1.label_show)  # 将OpenCV格式的图像转换为PySide格式,并在小部件上显示

    @staticmethod
    # 系统的初始化
    def start_todo():
        # 读取json文件并分配变量
        Jobs.read_json()
        # ######################主窗口的部件初始化###################################
        window1.move(0, 0)
        window1.masterBtnStation = window1.btnGroup.children()  # 主窗口的按钮站
        window1.imgAdjustGroup.hide()  # 图像微调的部件群
        # 图像微调的部件的初始化
     
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深蓝海拓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值