the subgradient of hingle loss 合页函数的次梯度

合页损失:

lh(z,W)=max(0,1ywTkx)

其中 z=(x,y,k) , W 是多任务学习的权重,k表示样本 (x,y) 所对应的任务。
对于二维的情况,我们很容易画出其函数。而且 max 函数是分段平滑函数构成,因此我们只需要求解各个分段平滑函数的导数即可:
1ywTkx>0 时,
l(w)w=yx

1ywTkx<0 时,
l(w)w=0

1ywTkx=0 时,存在很多次梯度,因为点 x 是两个分段平滑函数的交点,而我们只需要计算一个次梯度,因此我们可以将其规划为上面任意一个公式即可。
即有:
l(w)w={yx0if 1ywTkx>0if 1ywTkx0

或:
l(w)w={yx0if 1ywTkx0if 1ywTkx<0

参考文献:
http://blog.csdn.net/raby_gyl/article/details/52077317

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值