可解释的对抗训练网络模型:Interpreting Adversarially Trained Convolutional Neural Networks-ICML 2019

可解释的对抗训练网络:Interpreting Adversarially Trained Convolutional Neural Networks-ICML 2019

前言

最近在考虑做对抗样本可解释性方面的研究,之前没有接触过。今天要分享的这篇文章发表在ICML 2019上,我在实验室的组会中也进行了分享,因此接下来,将通过文字结合PPT的形式将内容分享给大家。

一.背景

1.1 可解释性

在叙述这篇论文之前,我们先理解一下模型的可解释性,什么意思呢?顾名思义,就是对模型进行一个合理化的解释。那么我们为什么需要这么做?现在随着人工智能的发展,越来越多的AI应用走进我们的生活一定是个趋势,但是很多时候啊,我们身边的AI处理的更多是一些无关紧要的事,或者是一些给生活增添乐趣的事,就比如天猫精灵,平日生活里互动互动,它偶尔出个错,我们也不会在意什么。但是,如果我们真的把一些重要的决定交给这些人工智能,这些机器的时候,你还能那么开心吗,还能放心嘛?当波音飞机忽略驾驶员的指令,决定义无反顾的冲向大地时,你紧不紧张?;当银行系统莫名其妙否决你的贷款申请的时候,你难不难过?;当自动化敌我识别武器系统决定将炮火开向你的时候,你还在吗?这个时候,我们内心深处最想问的一定是:它为什么这么做?有依据嘛? 到这儿,我们应该就明白了模型的可解释性的重要性,它使得AI放心的进入我们的生活

模型可解释性
机器学习算法可以看成是黑盒子模型,训练数据流入黑盒子,训练出一个函数(这个函数也可以称之为模型),输入新的数据到该函数得出预测结果。关于模型的可解释性,就是要回答为什么的问题,如何解释该函数,它是如何预测的?

在机器学习的众多算法中,有的模型很难解释,例如深度神经网络。深度神经网络可以拟合高度复杂的数据,拥有海量的参数,但是如何解释这些非常困难。但是还是有相当一部分算法是可以比较容易的解释的。如:线性回归,决策树等。

可解释的模型的种类毕竟有限,我们希望能够找到一些方法,对任何的黑盒子机器学习模型提供解释。这里就需要和模型无关的方法了。如:替代模型,特征交互等。替代模型就是用一个可解释的更简单的模型,对于黑盒模型的输入和预测训练出一个替代品,用这个模型来解释复杂的黑盒模型。

除此之外,还有基于样本的模型解释。就比如我想要研究的对抗样本方向的可解释性问题,以及反事实解释,有影响的实例等。

<

  • 6
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值