可解释的对抗训练网络模型:Interpreting Adversarially Trained Convolutional Neural Networks-ICML 2019

本文深入探讨了加入对抗训练的神经网络与普通网络在识别物体时的差异,重点在于理解对抗训练如何影响模型的可解释性。通过对模型的视觉验证和量化分析,实验表明对抗训练网络对形状和边缘的敏感度高于对纹理的敏感度,从而提供了更可靠的解释性。
摘要由CSDN通过智能技术生成

可解释的对抗训练网络:Interpreting Adversarially Trained Convolutional Neural Networks-ICML 2019

前言

最近在考虑做对抗样本可解释性方面的研究,之前没有接触过。今天要分享的这篇文章发表在ICML 2019上,我在实验室的组会中也进行了分享,因此接下来,将通过文字结合PPT的形式将内容分享给大家。

一.背景

1.1 可解释性

在叙述这篇论文之前,我们先理解一下模型的可解释性,什么意思呢?顾名思义,就是对模型进行一个合理化的解释。那么我们为什么需要这么做?现在随着人工智能的发展,越来越多的AI应用走进我们的生活一定是个趋势,但是很多时候啊,我们身边的AI处理的更多是一些无关紧要的事,或者是一些给生活增添乐趣的事,就比如天猫精灵,平日生活里互动互动,它偶尔出个错,我们也不会在意什么。但是,如果我们真的把一些重要的决定交给这些人工智能,这些机器的时候,你还能那么开心吗,还能放心嘛?当波音飞机忽略驾驶员的指令,决定义无反顾的冲向大地时,你紧不紧张?;当银行系统莫名其妙否决你的贷款申请的时候,你难不难过?;当自动化敌我识别武器系统决定将炮火开向你的时候,你还在吗?这个时候,我们内心深处最想问的一定是:它为什么这么做?有依据嘛? 到这儿,我们应该就明白了模型的可解释性的重要性,它使得AI放心的进入我们的生活

模型可解释性
机器学习算法可以看成是黑盒子模型,训练数据流入黑盒子,训练出一个函数(这个函数也可以称之为模型),输入新的数据到该函数得出预测结果。关于模型的可解释性,就是要回答为什么的问题,如何解释该函数,它是如何预测的?

在机器学习的众多算法中,有的模型很难解释,例如深度神经网络。深度神经网络可以拟合高度复杂的数据,拥有海量的参数,但是如何解释这些非常困难。但是还是有相当一部分算法是可以比较容易的解释的。如:线性回归,决策树等。

可解释的模型的种类毕竟有限,我们希望能够找到一些方法,对任何的黑盒子机器学习模型提供解释。这里就需要和模型无关的方法了。如:替代模型,特征交互等。替代模型就是用一个可解释的更简单的模型,对于黑盒模型的输入和预测训练出一个替代品,用这个模型来解释复杂的黑盒模型。

除此之外,还有基于样本的模型解释。就比如我想要研究的对抗样本方向的可解释性问题,以及反事实解释,有影响的实例等。

<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值