终于等到,北大DeepSeek第二版!《DeepSeek提示词工程和落地场景》

本文是关于DeepSeek内部研讨系列的报告,主要探讨了提示词工程和落地场景,由AI肖睿团队(韩露、吴寒、孙萍、李娜、刘誉)于2025年2月22日在北大青鸟人工智能研究院、北大计算机学院元宇宙技术研究所、北大教育学院学习科学实验室联合举办。报告深入分析了DeepSeek的火爆原因,介绍了直接使用DeepSeek的三种方法,并详细讲解了提示词技巧,旨在帮助用户通过自然语言交互充分释放DeepSeek的潜能。

以下是部分内容:

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

图片

文章篇幅原因,仅作部分展示。需要完整电子版的可以按下方的方式领取。

图片

关注《java架构笔记》,回复【提示词】获取 

图片

### 关于北京大学与DeepSeek合作的研究成果 北京大学与DeepSeek之间的合作聚焦于推动人工智能技术的发展及其应用。双方的合作不仅促进了理论研究的进步,还加速了科技成果向实际产品的转化。 #### 自然语言处理联合实验室 北京大学与DeepSeek共同建立了自然语言处理(NLP)联合实验室[^1]。该实验室致力于开发先进的NLP算法技术,旨在提高机器理解人类语言的能力。研究成果广泛应用于智能客服、情感分析等多个场景中。 ```python import torch from transformers import BertTokenizer, BertForSequenceClassification tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') model = BertForSequenceClassification.from_pretrained('bert-base-chinese') def predict_sentiment(text): inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits prediction = torch.argmax(logits).item() return 'Positive' if prediction == 1 else 'Negative' print(predict_sentiment("今天天气真好")) ``` #### 计算机视觉方向的合作 除了在自然语言处理方面的深入合作外,在计算机视觉领域也有显著进展。通过结合北大深厚的科研底蕴以及DeepSeek强大的工程能力,团队成功研发了一系列高效的图像识别模型,能够实现在复杂环境下的精准目标检测分类[^2]。 #### 行业影响力及贡献 上述合作所取得的技术突破得到了业界的高度认可。这不仅体现在发表高水平论文数量上,更重要的是这些技术创新已经被广泛应用到各个行业中去,为企业社会创造了巨大价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值