南京审计大学作为我国审计领域的重要教育与研究机构,始终聚焦行业前沿需求,推动审计技术与产业实践的深度融合。针对工程审计领域数据体量大、专业性强、流程复杂的特点,学校联合行业专家与技术人员,编制了《面向工程审计行业的DeepSeek大模型应用指南》(以下简称《指南》)。该指南以DeepSeek大语言模型为核心工具,系统探索其在工程审计全流程中的创新应用,旨在为工程审计从业者提供智能化解决方案,助力行业效率提升与风险防控能力升级。
1. 背景与行业需求
工程审计涉及工程造价审核、合同合规性审查、工程进度监管、质量风险识别等多元场景,传统审计方法依赖人工经验与抽样分析,面临数据整合难、动态跟踪弱、专业壁垒高等挑战。随着新基建与智慧城市建设的推进,工程项目的规模与复杂度显著增加,亟需通过人工智能技术实现数据驱动的精细化审计。DeepSeek大模型凭借其强大的自然语言理解、多模态数据处理与逻辑推理能力,可有效应对工程审计中的非结构化文本分析(如合同条款、施工日志)、跨系统数据关联(如造价清单与财务凭证)等难题,为行业数字化转型提供技术支撑。
2. 核心内容框架
《指南》以“场景导向、技术赋能、安全合规”为原则,构建了覆盖工程审计核心环节的应用体系:
-
工程审计场景适配与模型能力解析:结合工程审计特点,梳理DeepSeek在工程造价审核(工程量计算偏差检测)、合同风险识别(条款合规性审查)、招投标审计(围标串标特征分析)、工程变更审核(变更依据完整性验证)等场景中的适用性,并解析模型的多模态数据处理、时序数据分析等关键技术优势。
-
全流程操作指南:分步骤演示模型在工程审计中的具体应用,包括:
-
数据预处理与输入规范:指导如何结构化工程图纸、合同文本、进度报告等异构数据,并生成高质量模型输入;
-
智能分析工具链:提供基于DeepSeek的自动化工程量核对、成本超支预警、工期延误归因分析等工具的使用方法;
-
审计证据生成与报告撰写:利用模型快速生成审计底稿、风险提示清单及可视化报告模板,提升文档产出效率。
-
-
行业定制化优化策略:针对工程专业术语、行业规范(如《建设工程工程量清单计价规范》)及地域性政策差异,介绍如何通过领域知识注入、模型微调与提示词优化(Prompt Engineering)提升输出的准确性与专业性。
-
安全与合规管理:强调工程数据(如招投标信息、企业资质)的敏感性,制定数据脱敏规则、权限控制方案及审计痕迹留存机制,确保符合《审计法》《数据安全法》等法规要求。
3. 特色与创新价值
《指南》突破通用大模型在垂直领域的应用局限,凸显以下创新点:
-
场景化深度适配:针对工程审计特有的业务流程(如竣工决算审计、跟踪审计),设计定制化模型交互逻辑与输出模板,解决通用工具“泛而不精”的问题。
-
多源数据协同分析:整合BIM模型、物联网传感器数据、工程管理软件日志等多模态信息,构建基于DeepSeek的跨平台审计分析框架,实现“文本-数字-图像”全维度覆盖。
-
动态风险预警体系:利用模型的时序数据分析能力,建立工程成本、进度与质量的动态监控指标,支持审计从“事后检查”向“事中预警”延伸。
-
开源工具包支持:配套发布工程审计专用提示词库、案例数据集及API接口示例,降低技术应用门槛,促进产学研协同创新。
4. 应用前景与受众群体
《指南》适用于工程审计师、项目管理方、监理单位及政府监管部门,可广泛应用于建筑、交通、能源等领域的审计实践。通过引入DeepSeek大模型,用户可实现三大跃升:
-
效率提升:自动化处理重复性工作(如数据比对、格式审查),缩短审计周期30%以上;
-
风险洞察深化:通过海量数据关联分析,发现隐蔽性违规线索(如虚假签证、材料价差舞弊);
-
决策支持增强:基于模型生成的趋势预测与合规建议,辅助管理者优化工程管控策略。
5. 总结与展望
南京审计大学发布的《指南》,标志着人工智能技术在工程审计领域的落地迈出关键一步。未来,随着BIM、数字孪生等技术与大模型的进一步融合,工程审计有望实现全生命周期智能化监管。本指南将持续迭代,探索模型在ESG审计、智能合约审查等新兴场景的应用,为工程审计的高质量发展注入持续动能,助力构建透明、高效的基础建设生态体系。
关注《java架构笔记》,发送《工程》