通用大模型这么好用,为啥还要训练审计私有大模型?

引子

有读者问:

通用大模型这么强了,整本地或私有部署大模型有什么实际意义么?

此“模型”非彼“模型”

当讨论大模型时,我们经常会与传统的模型相混淆。

尽管它们都包含“模型”这个词,但它们的内涵有很大的不同。

传统的模型主要是规则或算法的集合,而大模型,类似于世界模型的理解,则更加复杂和全面。

数据安全第一位

举个例子,在银行进行信用风险审计时,需要处理大量的非结构性授信调查报告。

这些报告通常包含丰富的信息,如时空背景、人物关系、上下游关系、担保关系和潜在风险点,但解读这些信息需要专业知识与经验。

目前的大语言模型,如kimi,已能够高效处理这类任务。但出于数据安全和隐私保护考虑,银行不可能将所有内部数据发送到外部通用大模型进行处理。

为了数据安全,就需要部署本地的大模型来处理这些报告。本地大模型的优势在于可以保护数据的安全性,同时根据具体需求进行定制化训练,以更准确地识别和提炼关键信息。

通过本地或私有化部署,进行本行业微调,大模型可以训练识别报告中的关键要素,如借款人的财务状况、担保物的评估、市场趋势分析、潜在风险点分析等,从而帮助审计人员更快地做出决策。

在部署本地大模型的过程中,需要注意大模型的持续训练和优化,确保其能够适应不断变化的市场环境和审计标准。

这个过程中,有效的数据治理和访问控制措施也是确保数据安全的关键。

通过本地化或者私有大模型部署,不仅能够提高审计效率,还能确保敏感信息的安全保护。

微调:“入职培训”

当前的通用大语言模型就像一位知识渊博、能力出众的名牌大学毕业生,他们具备广泛的通用知识,能够快速理解和处理各种信息,但却缺乏解决企业具体问题的能力。

就如这位毕业生进入特定公司工作一样,模型也需要适应特定组织的业务需求、文化和管理风格。

在这种情况下,对大模型进行“入职后培训”就变得尤为重要,这就是说要对大模型进行本地化部署和垂直领域的微调训练。

具体来说,这包括:

1. 企业文化和价值观的培训:确保大模型理解和遵循组织的核心价值观和行为准则。

2. 履职能力的培养:针对特定岗位的需求,对大模型进行功能性和专业性的训练。

3. 规章制度的熟悉:让大模型了解并遵守组织的规章制度,确保其行为符合组织的要求。

4. 业务情况的了解:对大模型进行特定业务领域的训练,使其能够更好地理解和处理相关任务。

通过这种定制化的训练(微调等),就像新员工通过培训更快地融入公司提高工作效率一样,大模型能够更好地适应特定组织的需求,发挥其最大潜力,同时确保其行为和输出与组织的期望相符。

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

<think>嗯,用户现在问的是大语言模型的用法。首先,我需要明确用户的需求是什么。可能他们想了解如何有效使用像ChatGPT这样的模型,或者想知道不同场景下的应用方法。用户可能是开发者、学生,或者普通用户,需要不同层面的信息。 接下来,我得回顾之前的历史对话。用户之前询问过关于YOLOv5的实现细节,可能对技术内容比较熟悉。但这次的问题更偏向于大语言模型的应用,可能需要调整回答的深度,既要有技术细节,也要有实际用例。 用户可能需要一个结构化的回答,涵盖基本用法、高级技巧、优化方法以及常见问题。考虑到他们之前对代码实现的关注,可能对API调用和开发集成部分特别感兴趣。不过,也要确保回答不过于技术化,保持易懂。 我需要检查是否有系统级的指令需要注意,比如使用中文、LaTeX格式的数学公式等。但当前问题可能不涉及数学公式,所以重点放在清晰的结构和实用信息上。 另外,用户可能隐含地想知道如何解决使用大语言模型时的常见问题,比如提示词效果不佳或生成内容不准确。因此,在回答中加入常见问题及解决方案会有帮助。 最后,要确保回答覆盖不同层次的应用,从基础到进阶,并提供实际例子,这样用户可以根据自身需求选择合适的方法。同时,避免使用专业术语过多,必要时进行解释,确保内容的可访问性。</think>以下是关于大语言模型(LLM)用法的系统性说明,涵盖基础应用、进阶技巧和优化方法: --- ### 一、基础应用场景 #### 1. 通用文本生成 - **对话交互** ```python # OpenAI API示例 response = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "你是一个专业翻译"}, {"role": "user", "content": "将'Hello World'翻译成法语"} ] ) ``` **输出优化技巧**: 设置`temperature=0.7`控制随机性(0-2范围),`max_tokens=500`限制生成长度 #### 2. 信息检索与问答 - **结构化知识提取** ```text 用户输入:解释量子纠缠现象,用三句话说明,包含数学公式 系统提示:你是一位物理学教授,用$$...$$格式展示关键公式 ``` 典型输出: $$|\Psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$ #### 3. 代码辅助开发 - **代码生成与纠错** ```python # 请求示例 "用Python实现快速排序,要求: 1. 添加类型标注 2. 包含时间复杂度注释 3. 使用递归实现" ``` 输出特征: ```python def quick_sort(arr: list[int]) -> list[int]: """时间复杂度:平均O(n log n),最坏O(n²)""" if len(arr) <= 1: return arr pivot = arr[len(arr)//2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) ``` --- ### 二、进阶使用技巧 #### 1. 提示工程(Prompt Engineering) | 方法 | 示例 | 效果提升点 | |-----------------|--------------------------|-----------------------| | 思维链(CoT) | "请分步骤解释..." | 提升复杂问题推理能力 | | 少样本学习 | 提供3个输入输出示例 | 增强格式控制精度 | | 角色扮演 | "假设你是资深律师..." | 提升领域专业性 | #### 2. 参数调优组合 ```python # 典型参数配置 generation_config = { "temperature": 0.3, # 创造性(低→严谨,高→多样) "top_p": 0.9, # 核采样阈值 "frequency_penalty": 0.5, # 抑制重复内容 "presence_penalty": 0.2, # 促进新话题出现 "stop": ["\n###"] # 停止生成标记 } ``` #### 3. 记忆增强方法 - **上下文窗口管理** 使用滑动窗口技术维护对话历史: ```text 最新对话(保留): [t-3, t-2, t-1, t] 早期摘要(压缩): "用户讨论了机器学习基础概念..." ``` --- ### 三、企业级应用方案 #### 1. 私有化部署架构 ``` 数据流架构: 用户请求 → API网关 → 负载均衡 → [LLM实例1, LLM实例2] → 向量数据库 → 输出 ``` #### 2. 性能优化策略 | 技术 | 效果 | 实现示例 | |-----------------------|--------------------------|------------------------| | 模型量化 | 显存占用减少50% | `bitsandbytes`库8-bit量化 | | 请求批处理 | 吞吐量提升3-5倍 | 动态padding批处理 | | 缓存机制 | 重复查询响应时间<100ms | Redis缓存常见问答 | #### 3. 安全控制方案 - **内容过滤层** ```python def safety_check(text): if any(word in text for word in blocklist): return "内容不符合安全规范" return text ``` - **审计日志** 记录所有API请求的`(timestamp, user_id, prompt_hash)` --- ### 四、常见问题解决方案 #### 1. 生成内容不准确 - **对策**:启用检索增强生成(RAG) ```python def rag_pipeline(query): results = vector_db.search(query, top_k=3) context = "\n".join(results) return llm.generate(f"基于以下信息回答:{context}\n问题:{query}") ``` #### 2. 长文本处理限制 - **解决方案**: 使用`LangChain`的`map-reduce`方法: ```text 原始文本 → 分块处理 → 各块摘要 → 综合摘要 ``` #### 3. 多语言支持 - **最佳实践**: 添加语言识别中间件: ```python from langdetect import detect lang = detect(user_input) system_prompt += f"请用{lang}语种回答" ``` --- 如果需要具体场景的代码实现方案(如客服系统集成、知识库构建等),可说明具体需求方向。对于模型微调(Fine-tuning)、分布式训练等深度技术细节,也可提供专项说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值