引子
有读者问:
通用大模型这么强了,整本地或私有部署大模型有什么实际意义么?
此“模型”非彼“模型”
当讨论大模型时,我们经常会与传统的模型相混淆。
尽管它们都包含“模型”这个词,但它们的内涵有很大的不同。
传统的模型主要是规则或算法的集合,而大模型,类似于世界模型的理解,则更加复杂和全面。
数据安全第一位
举个例子,在银行进行信用风险审计时,需要处理大量的非结构性授信调查报告。
这些报告通常包含丰富的信息,如时空背景、人物关系、上下游关系、担保关系和潜在风险点,但解读这些信息需要专业知识与经验。
目前的大语言模型,如kimi,已能够高效处理这类任务。但出于数据安全和隐私保护考虑,银行不可能将所有内部数据发送到外部通用大模型进行处理。
为了数据安全,就需要部署本地的大模型来处理这些报告。本地大模型的优势在于可以保护数据的安全性,同时根据具体需求进行定制化训练,以更准确地识别和提炼关键信息。
通过本地或私有化部署,进行本行业微调,大模型可以训练识别报告中的关键要素,如借款人的财务状况、担保物的评估、市场趋势分析、潜在风险点分析等,从而帮助审计人员更快地做出决策。
在部署本地大模型的过程中,需要注意大模型的持续训练和优化,确保其能够适应不断变化的市场环境和审计标准。
这个过程中,有效的数据治理和访问控制措施也是确保数据安全的关键。
通过本地化或者私有大模型部署,不仅能够提高审计效率,还能确保敏感信息的安全保护。
微调:“入职培训”
当前的通用大语言模型就像一位知识渊博、能力出众的名牌大学毕业生,他们具备广泛的通用知识,能够快速理解和处理各种信息,但却缺乏解决企业具体问题的能力。
就如这位毕业生进入特定公司工作一样,模型也需要适应特定组织的业务需求、文化和管理风格。
在这种情况下,对大模型进行“入职后培训”就变得尤为重要,这就是说要对大模型进行本地化部署和垂直领域的微调训练。
具体来说,这包括:
1. 企业文化和价值观的培训:确保大模型理解和遵循组织的核心价值观和行为准则。
2. 履职能力的培养:针对特定岗位的需求,对大模型进行功能性和专业性的训练。
3. 规章制度的熟悉:让大模型了解并遵守组织的规章制度,确保其行为符合组织的要求。
4. 业务情况的了解:对大模型进行特定业务领域的训练,使其能够更好地理解和处理相关任务。
通过这种定制化的训练(微调等),就像新员工通过培训更快地融入公司提高工作效率一样,大模型能够更好地适应特定组织的需求,发挥其最大潜力,同时确保其行为和输出与组织的期望相符。
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓