2021年 全网最细大数据学习笔记(一):初识 Hadoop

这篇博客介绍了大数据的基本概念、特点和行业应用,特别关注了Hadoop在大数据处理中的角色。大数据的定义、5V特点(大量、高速、多样、低价值密度、真实性)和行业案例(医疗、金融、交通、教育、商业)被详细阐述。Hadoop作为云计算的一部分,是大数据技术的核心,提供分布式存储和计算,解决了大数据的管理和分析问题。Hadoop的发展历史、核心组件(HDFS、MapReduce、YARN)及其优势也被提及。此外,博客还讨论了其他大数据处理平台如Storm和Spark,并提到了大数据人才的需求和岗位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、大数据

随着近来计算机技术和互联网的发展,大数据 这个名词越来越多地进入到我们的视野中,大数据的快速发展也无时刻影响着我们的生活。

1、大数据的定义

大数据从字面来理解就是 大量的数据。日常生活离不开数据,可以说每时每刻都在产生着数据。例如,一分钟可以做些什么事呢?在日常生活中,一分钟可能连一页书都看不完。但是一分钟内产生的数据却是庞大的。据统计,在一分钟内,YouTube 用户上传 300 小时的新视频,电子邮件用户发送 2.4 亿条信息,Google 收到超过 278 万个搜索查询,Facebook 用户点赞 4166 667 次,消费者在网购上花费 272070 美元,Twitter 用户发布 347222 条推文,Instagram 用户每分钟发布 123060 张照片,Netflix 用户观看 77160 个小时的视频,微信红包的收发 1527777 个。

这些数据还在不停地增长,那么大数据究竟是什么?国际顶

03-08
### VMamba IT 工具或库介绍 #### EfficientVMamba 的架构特点 EfficientVMamba 是一种高效的视觉骨干网络,基于状态空间模型(SSM),特别采用了 Mamba 架构。这种设计使得该模型能够在保持较高精度的同时显著减少参数数量和计算资源消耗[^1]。 #### 性能表现 实验结果显示,在单尺度(SS)和多尺度(MS)测试条件下,不同版本的 EfficientVMamba 模型均表现出优异的成绩。例如,EfficientVMamba-T 在 SS 和 MS 下分别实现了 38.9% 和 39.3% 的 mIoU;而 EfficientVMamba-S 则进一步提升至 41.5% (SS) 和 42.1% (MS),即使在较低的计算成本下也超越了一些更复杂的模型如 DeiT-S + MLN。对于更大规模的任务需求,EfficientVMamba-B 可提供高达 46.5% (SS) 和 47.3% (MS) 的 mIoU 表现,这表明它不仅适用于轻量化应用场景,也能应对更高难度的要求[^2]。 #### 应用场景建议 当面对具有明显分类特征的任务时,采用此类方法能够有效提高处理效率。通过 AI 系统的大语言模型或者传统算法来判断具体任务属性,并据此选择最合适的解决方案路径是一个明智的选择[^3]。 #### 结合其他工具增强功能 为了更好地展示预测效果以及辅助开发人员调试优化工作流程,可以考虑集成 Supervision 这样的第三方包来进行可视化操作。利用其提供的 API 接口,开发者很容易实现对 EasyOCR 输出结果的图形化呈现,从而帮助理解模型决策过程中的细节部分[^4]。 ```python from supervision import visualize_predictions_on_image def show_ocr_results(image_path, ocr_output): """ 将 OCR 预测结果绘制到原始图片上 参数: image_path (str): 输入图像文件路径 ocr_output (list of dict): 包含 'text', 'bbox' 键值对列表形式的 OCR 输出 返回: None """ img = cv2.imread(image_path) annotated_img = visualize_predictions_on_image(img, ocr_output) plt.imshow(cv2.cvtColor(annotated_img, cv2.COLOR_BGR2RGB)) plt.axis('off') plt.show() ```
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

棒棒编程修炼场

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值