机器学习中几个常见模型的优缺点


朴素贝叶斯:优点:对小规模的数据表现很好,适合多分类任务,适合增量式训练。

缺点:对输入数据的表达形式很敏感(连续数据的处理方式)。

决策树:优点:计算量简单,可解释性强,比较适合处理有缺失属性值的样本,能够处理不相关的特征。缺点:容易过拟合(后续出现了随机森林,减小了过拟合现象)。

逻辑回归:优点:实现简单,分类时计算量非常小,速度很快,存储资源低。缺点:容易欠拟合,一般准确度不高;只能处理二分类问题(softmax解决多分类),需线性可分。

损失函数:

KNN:优点:思想简单,理论成熟,既可以用来做分类也可以用来做回归; 可用于非线性分类;训练时间复杂度为O(n);准确度高,对数据没有假设,对outlier不敏感。缺点:计算量大;样本不平衡时的问题;需要大量的内存;未归一化时影响很大

SVM:优点:可用于线性/非线性分类,也可以用于回归;低泛化误差;容易解释;计算复杂度较低。缺点对参数和核函数的选择比较敏感;原始的SVM只比较擅长处理二分类问题。

损失函数:

归一化的作用

1.      提高梯度下降法求解最优解的速度(很难收敛甚至不能收敛);例如等高线:


2.      有可能提高精度;一些分类器需要计算样本之间的距离,例如KNN,若一个特征值范围较大,距离计算将取决于这个特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值