深度学习 - 图像识别 - 传送门

深度学习 - 图像识别 - 传送门

今年有幸参与了恩智浦智能车竞赛,AI视觉组,我负责完成深度学习实现图像识别的任务。这是我的深度学习入门之路,现在打算将一路上所有的学习经历分享出来。

学习途中从网络寻求了很多帮助,如果还能找到来源,一定会尽力找到附上原网址。

内容较多,近几日持续更新。


传送门

〇、前言

一、机器学习基础

二、开发环境搭建

三、逐行学习代码,熟悉开发环境

四、学习Keras构建网络,尝试各种模型

五、TensorBoard 可视化,更可靠

六、克服过拟合的第一步 实现过拟合

七、与导师闲言小叙,忽有灵光

八、发现神器,但功力不够,反造成内伤

九、老老实实调参师,挨个尝试架构

十、发现妙解!量化装载!超内存!

十一、最后的灵丹

十二、在线预测百分百,量化之后二百五?

十三、量化之后表现差?在线运行试试

十四、甲方又来催了…租个服务器加急

十五、寻了千百遍,原因竟不在于神经网络太傻

十六、尾声

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chorgy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值