基于DeepSeeK的用户意图智能识别

      记录一下DeepSeek大模型在我们公司业务场景应用落地的思考过程,以供同行者们参考。

     笔者是上海XX科技公司的管理人员,事情的起因是源于我们的主营业务【基于医药行业的供应链金融服务】的需求,我们对接了许多资金方,每天有大几千笔的放款业务不断的实时发生,为了能实时便捷的得到任意年、月、日的放款数据,我们在DeepSeek出来之前就一直在探讨相应的实现方案。

      我设想的理想方式,就是给我配备一个全能的助理,我只要口头发出指令,助理就能明白我的意图,并立即(秒级)从公司管理系统中获取到实时数据,形成文档、表格或图表给我,如下图所示。

      当然这样的助理现实中是不存在,没有人能这么快实现我的需求。但是DeepSeek的出现,给了我们希望,因为它足够聪明,能理解自然语言表达的的意图,也足够便宜,能让公司轻松承担大模型应用带来的成本增加。经过公司技术团队两个月的努力尝试,我们已经实现上述的需求。

      基于企业的(ToB)大模型应用,与大家熟悉的豆包、Kimi、文心一言、通义千问等面向个人(ToC)是有很大的不同的。其中有几个主要的痛点如下:

      1、ToB应用要有权限的控制。不同角色对同样的指令要有不一样的响应。例如:同样的是查询放款量,管理人员能查,运维人员就得提示用户没有授权,无法查询。同样的是查询客户额度,分配给你的客户能查,没有分配的客户,就不能返回相应的内容。

      2、ToB应用更注意数据的安全。企业都不会愿意把自己的核心业务数据上传到公网,所以对于调用云端的API或服务,就会非常介意。对于大模型应用,企业的第一反应是要求本地化部署,但这必须带来成本的上升和更新升级的不便。

      3、ToB场景决策和执行往往是分离的。管理员下发指令,然后由中层或基层人员去执行。这样在实时性方便就很难满足决策支持要需求。当执行人员整理好数据时,决策者可能已经在想新的问题了。

      为了解决上述痛点,我们团队经过大量的尝试和实践,最终选择了微信公众号做为大模型应用的载体。首先,通过微信公众号的强大的语音转文字功能,解决了输入要便捷的问题。即使年龄偏大的管理者也能够像与身边人交流一样,通过语音向大模型应用发出指令。其次,通过对接各个大厂部署DeepSeek的满血版API,解决用户意图智能识别的问题,实测下来,识别的准确率还是很高的。再次,通过DeepSeek的意图智能识别,再让公众号后台服务去调用我们预定义的API,查得数据,生成图文消息,返回到公众号对话框。这样既利用了云端DeepSeek的满血版API的能力,又能避免企业业务数据暴露在公网。具体架构如下图所示。


        最后,展示一下成果。识别用户意图后,剩下的就是传统的手艺了。通过预定义API查得的企业业务数据,可以生成文字消息、图片、PDF、EXCEL等形式,实时返回到公众号的对话框。以即时满足老板们的决策需求。如下所示:


         后记,大模型确实能实实在在的提升我们企业的生产力,怎么利用大模型能力为我所用,还待诸君努力。简单记录,共勉之。

### 使用DeepSeek框架构建对话型数字人的方法 构建对话型数字人涉及多个技术组件的集成,包括自然语言处理(NLP)、语音识别(ASR)以及图像生成等。DeepSeek作为一个综合性平台,提供了这些功能的支持。 #### 1. 自然语言理解模块 为了使数字人能够理解和回应用户的输入,需要训练一个强大的NLP模型来解析语义并提取意图。这可以通过预训练的语言模型进一步微调实现,以适应特定的应用场景或行业领域的需求[^1]。 ```python from deepseek.nlu import NLUModel nlu_model = NLUModel(pretrained=True) nlu_model.finetune(dataset="custom_conversation_data") ``` #### 2. 对话管理器 创建有效的对话流对于保持良好的用户体验至关重要。开发者应该设计状态机或者采用更先进的强化学习算法来优化决策过程,从而让虚拟角色做出更加智能化的回答。 ```python class DialogueManager: def __init__(self): self.state = 'idle' def update_state(self, user_input): # 更新当前对话状态逻辑 pass def get_response(self): if self.state == 'greeting': return "Hello! How can I assist you today?" elif self.state == 'farewell': return "Goodbye!" ``` #### 3. 多模态交互界面 为了让数字形象看起来更具真实感,除了文字交流外还可以加入表情动画和声音播放等功能。利用计算机视觉技术和音频合成工具,可以使人物动作与所说的话同步协调一致。 ```python import cv2 from deepseek.tts import TextToSpeechConverter tts_converter = TextToSpeechConverter() def play_animation_and_speech(text_message): animation_frames = generate_animation_based_on_text(text_message) speech_audio = tts_converter.convert_to_speech(text_message) for frame in animation_frames: cv2.imshow('Digital Human', frame) cv2.waitKey(int(speech_audio.duration * 1000)) ``` 通过上述三个主要部分的工作,即实现了基于DeepSeek框架下的对话型数字人的基本架构搭建。当然,在实际开发过程中还需要考虑更多细节问题如性能优化、安全性保障等方面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值