玩转大模型!用Replicate一键部署

Replicate是一个云端的机器学习模型运行平台。它可以让用户使用云端API 直接运行机器学习模型,而无需了解复杂的机器学习模型内部构造。

Replicate允许用户在Python或Jupyter Notebook中运行模型,并在云端进行模型的部署和调优。你可以用它运行他人发布的开源模型,也可以打包并发布自己的模型。使用Replicate,你只需一行代码就可以生成图像、运行和调优开源模型,以及部署自定义模型。通过在Python代码中调用Replicate的API,你可以在Replicate上运行模型,并获取模型的预测结果。

模型预测如何工作

无论何时运行一个模型,都是在创建一个模型预测。模型预测是使用建立的模型对新数据进行预测的过程。在模型预测中,我们使用已经训练好的模型来预测未知数据的结果。这个过程可以通过输入新数据到模型中,并获得模型的输出来完成。

有些模型运行速度很快,几毫秒内就能返回结果。另外一些模型运行时间较长,尤其是生成模型,比如根据文本提示生成图像的模型。

对于这些运行时间较长的模型,你需要轮询 API 来检查预测的状态。模型预测可以有以下任何一种状态:

  • 开始:预测正在启动。如果该状态持续的时间超过几秒钟,那么通常是因为正在启动一个新的线程来运行预测。
  • 处理:模型的 predict() 方法正在运行。
  • 成功:预测成功完成。
  • 失败:预测在处理过程中遇到错误。
  • canceled(取消):用户取消了预测。

登录后,你可以在仪表板上查看预测列表,其中包含状态、运行时间等摘要:

在这里插入图片描述

如何在浏览器中运行模型

你可以使用云端 API 或网页浏览器在 Replicate 上运行模型。网页能让你直观地看到模型的所有输入,并生成一个表单,可直接从浏览器运行模型,如下所示:

在这里插入图片描述

如何使用 API 运行模型

网页非常适合用来理解模型,但当你准备将模型部署到聊天机器人、网站或移动应用中时,API 就能发挥作用了。

Replicate的HTTP API 可与任何编程语言配合使用,而且还有 Python、JavaScript 和其他语言的客户端库,让 API 的使用更加方便。

使用 Python 客户端,只需几行代码即可创建模型预测,首先安装Python库:

pip install replicate

通过在环境变量中设置令牌来进行身份验证:

export REPLICATE_API_TOKEN=<paste-your-token-here>

然后你可以通过 Python 代码在 Replicate 上运行任何开源模型。下面的示例运行了 stability-ai/stable-diffusion:

import replicate

output = replicate.run(
  "stability-ai/sdxl:39ed52f2a78e934b3ba6e2a89f5b1c712de7dfea535525255b1aa35c5565e08b",
  input={"prompt": "An astronaut riding a rainbow unicorn, cinematic, dramatic"}
)

# ['https://replicate.delivery/pbxt/VJyWBjIYgqqCCBEhpkCqdevTgAJbl4fg62aO4o9A0x85CgNSA/out-0.png']

在这里插入图片描述

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### Replicate平台简介 Replicate是一个用于部署和管理机器学习模型的服务平台,允许开发者轻松上传、分享以及调用各种预训练好的大语言模型和其他类型的AI模型。该平台简化了从实验到生产的流程,支持多种框架和技术栈。 ### 如何使用Replicate平台进行模型部署 为了在Replicate平台上成功部署并利用模型执行推理操作,通常遵循以下几个方面的工作: #### 创建账户与登录 访问官网完成注册过程后即可获得API密钥,这是后续交互过程中身份验证所必需的信息[^1]。 #### 准备环境 确保本地环境中安装有`replicate`CLI工具,可以通过pip快速安装此软件包来辅助命令行下的各项任务处理[^2]。 ```bash pip install replicate ``` #### 选择或创建模型 如果打算共享自定义训练得到的新颖模型,则需按照官方指南打包成兼容格式;对于已有的公开可用资源可以直接搜索选用[^3]。 #### 编写配置文件 无论是哪种情况都需要准备相应的元数据描述文档(如Dockerfile或者Model Card),这些资料有助于其他使用者理解模型特性及其预期用途[^4]。 #### 发布至云端 借助上述准备工作完成后就可以运用特定指令提交给远程仓库等待审核通过后再正式上线供他人测试体验[^5]。 ```bash replicate model create \ --name my-model-name \ --description "A brief description of the model." \ --version-description "Initial version with basic features." ``` #### 执行预测请求 一旦模型处于可访问状态便能够立即发起RESTful API调用来获取实时计算结果,仅需指定目标实例ID连同输入参数一同传递过去就好[^6]。 ```python import replicate output = replicate.run( "username/repo:tag", input={"prompt": "Write a short story about..."} ) print(output) ``` ### 注意事项 在整个过程中务必关注各环节的安全性和合规性考量,比如妥善保管个人凭证防止泄露风险;另外也要留意成本控制因素因为按量计费模式下频繁调用可能产生成本开销。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值