使用AI进行公司基本面分析,预测股票趋势获取利润

LEVERAGING FUNDAMENTAL ANALYSIS FOR STOCK TREND PREDICTION FOR PROFIT

目前人工智能在股票价格预测的研究主要集中在技术分析层面,基本面分析的研究相对较少。技术分析适合短期交易者,基本面分析关注公司财务报表和宏观经济因素,适合中长期投资。模型缺乏基本面分析,导致对其在股票预测中的潜在价值理解不足。

本文提出仅使用基本面分析数据的机器学习模型,增强对基本面分析在股票趋势预测中的应用理解。探讨AI技术在股票价格模型中的应用,旨在为主动或战术投资策略的投资组合经理提供见解。

论文地址:https://arxiv.org/pdf/2410.03913

摘要

本研究探讨了使用机器学习模型(LSTM、1D CNN、LR)基于基本面分析预测股票趋势。强调利用公司财务报表和内在价值,而非技术或情绪分析。数据集包含269个数据点,涵盖2019至2023年间的多行业上市公司。采用关键财务比率和折现现金流(DCF)模型,设定两个预测任务:年股票价格差(ASPD)和当前股价与内在价值差(DCSPIV)。LR模型在ASPD(74.66%准确率)和DCSPIV(72.85%准确率)上优于CNN和LSTM。研究为将基本面分析与机器学习结合的文献提供了贡献,支持投资决策。

简介

人工智能在金融行业的应用日益增加,尤其是在股票价格预测中,研究者多采用技术分析和情感分析,基本面分析的应用较少。技术分析适合短期交易者,依赖历史价格模式和市场趋势,常用工具包括支撑位、阻力位、简单移动平均线等。情感分析通过分析新闻、社交媒体等文本数据,反映市场情绪,适合短期价格预测。基本面分析关注公司财务报表和宏观经济因素,适合中长期投资,因其评估周期较长,通常不被纳入短期预测模型。

机器学习模型中缺乏基本面分析,导致对其在股票预测中的潜在价值理解不足。Fama的有效市场假说和随机漫步假说认为技术分析和基本面分析无效,无法在有效市场中获利。成功的价值投资者认为基本面分析相较于技术分析更具优势。本研究探讨AI技术在股票价格模型中的应用,旨在为主动或战术投资策略的投资组合经理提供见解。开发多种机器学习模型,基于历史财务数据预测股票趋势,定义潜在回报的两种方式:年初至年末的股价差异和内在价值与当前股价的差异。主要贡献是提出仅使用基本面分析数据的机器学习模型,增强对基本面分析在股票趋势预测中的应用理解,为学术研究和金融行业实践提供新见解。

相关工作

技术分析

Aadhitya等人开发的CNN-LSTM模型分析NIFTY-50、NYSE和NASDAQ的每日股价,NIFTY股票准确率高达99%,优于单独LSTM和XGBoost。Nelson等人使用LSTM预测巴西股市,准确率为55%,强调技术分析受供需驱动,但不考虑外部因素。研究表明,机器学习模型如CNN-LSTM和LSTM在短期预测中有效,但需谨慎选择和优化以克服局限性。

情感分析

情感分析通过识别正负情绪来预测短期股价波动,深度神经网络优于线性模型,能学习事件与股价之间的隐含关系。结合公司新闻与行业新闻会因无关信息导致预测准确性下降。研究发现公众情绪能提供洞察,但专业来源的情绪往往存在偏见,可靠性较低。机器学习模型在整合结构化财务数据与非结构化文本信息后,显示出预测股市趋势的潜力。

基本面分析

Huang等人结合S&P 100指数的大盘股历史财务数据,使用FNN、RF和ANFIS模型进行长期股票表现预测,结果显示RF表现最佳,三种方法均能超越市场。Bekiros和Georgoutsos的研究表明,神经模糊模型在熊市中优于递归神经模型和买入持有策略,而在牛市中买入持有策略表现更佳。Ftiakas等人对1,353只NASDAQ股票应用七种算法,发现没有单一算法绝对优越,强调多种方法在金融分析中的必要性。Cao和You分析1965至2019年的历史数据,发现RF、梯度提升和人工神经网络在预测准确性上优于传统方法,揭示了金融数据中的非线性关系。

总结

传统基本面分析侧重于通过财务报表评估公司财务健康。机器学习技术的整合可以提高评估的准确性和深度。这种结合方法提供了对公司价值的更全面理解,考虑定量和定性因素。有助于投资者在复杂的金融环境中保持领先。

方法

本文探讨机器学习技术与基本面分析的联系。收集三份财务报表中的公司基本信息。计算关键财务比率,如流动比率和利润率。计算各指标的平均值。

数据收集

数据来源于Yahoo Finance,时间范围为2019年至2023年,选取269家稳定公司的股票。采用避免随机选择和高波动性的策略,符合行业专业人士的基本分析观点。大市值公司因其稳定性和可控风险,通常波动性较小。选择稳定或消费品行业的大公司,以更好地理解基本分析与价格波动及机器学习算法之间的关系。

数据集

数据来源于2019至2023年的财务文件:收入表、资产负债表和现金流量表。文件来自Yahoo Finance,提供公司历史财务数据。数据用于确定特征和标签,作为机器学习模型的基础。

特征

机器学习模型特征包括公司的历史财务数据和财务比率,基于损益表、资产负债表和现金流量表计算。模型还包含通过折现现金流(DCF)模型确定的公司内在价值。数据选择的依据是基本面分析,旨在评估财务数据和比率对公司股价的影响。财务比率有助于投资者比较公司与竞争对手,并合理定价。DCF模型是常用的公司估值技术,基于未来5到10年的现金流预测。

使用机器学习模型预测公司利润,主要关注两个指标:年股票价格差异(ASPD)和当前股价与内在价值差异(DCSPIV)。

  • ASPD标签:若年初股价因财务公告上涨至年末,标记为1;否则为0。

  • DCSPIV标签:通过内在价值与当前股价比较,若内在价值高于当前股价,标记为1;否则为0。

内在价值计算采用折现现金流(DCF)法,结合EV/EBITDA倍数和三种增长率(历史5年率、行业平均、Yahoo Finance增长率)。

标签

两种标签生成方法:第一种基于历史财务数据影响,第二种使用LSTM和CNN模型预测内在价值是否超过当前股价。

ASPD和DCSPIV的公式分别为:

当前股价P_cur为市场对公司价值的动态评估,研究重点在于价值变化,而非股价差异。

机器学习模型

LSTM。适用于股票价格预测,能有效建模时间序列数据,包含输入门、遗忘门和输出门,保持和更新信息,传递知识。

CNN。传统用于图像处理,但在金融中有效识别数据模式、趋势和异常,适合短期趋势检测,如盈利预测和信用交易异常检测。

逻辑回归。简单且可解释,适用于线性可分数据,广泛用于二分类任务,通过逻辑函数计算概率,预测新输入的类别。

LSTM预测ASPD

LSTM神经网络用于股票价格的二分类,捕捉时间依赖性。数据预处理包括特征选择、标准化和数据集划分。网络架构:LSTM层+两个隐藏层+线性层,输出单一二分类预测(sigmoid)。训练使用二元交叉熵损失和Adam优化器,训练5000个周期。监控性能指标:损失、准确率、精确率、召回率和F1分数。

CNN预测ASPD

CNN架构包含两个Conv1D层,后接最大池化层以降低维度和提取特征。数据经过展平后,传入两个全连接层,最终层使用sigmoid激活函数进行二分类输出。

LSTM预测DCSPIV

模型使用二元交叉熵进行分类任务,均方误差(MSE)进行回归任务。数据预处理包括填补缺失值、扁平化数组和使用StandardScaler进行特征缩放,最后调整为序列输入格式。模型架构包含一个50单元的共享LSTM层,后接一个64单元的ReLU激活的全连接层。模型有两个输出:一个用于二元分类(使用sigmoid激活),一个用于回归(使用线性激活)。

CNN预测DCSPIV

最终模型使用CNN处理内在价值数据集的多输出任务。数据预处理包括填补缺失值、扁平化数组和特征缩放。CNN架构包含两个卷积层,后接最大池化层以减少维度和提取关键模式。输出经过扁平化后,传递至密集层,分为两个输出:一个用于二分类(sigmoid激活),另一个用于回归(线性激活)。

结果

CNN模型在ASPD上仅有55.36%准确率,表现最差;Logistic回归在两个数据集上表现最佳,ASPD为74.66%,DCSPIV为72.85%。LSTM和CNN在训练中表现良好,准确率分别为98.51%和97.51%,但测试准确率低于Logistic回归。LSTM在DCSPIV的平均召回率为92.66%,能较好检测真阳性。CNN在DCSPIV的平均测试精度为58.35%,略优于LSTM,但整体表现不如Logistic回归,后者在准确率、精度、召回率和F1分数上均最佳。

讨论

模型表现

逻辑回归在非序列或空间数据中表现优越,具有较强的泛化能力,尽管训练指标较低。LSTM 和 CNN 在训练中表现强劲,但容易过拟合,导致测试准确率、精确度和 F1 分数下降。LR 在 ASPD 和 DCSPIV 数据集上测试表现更佳,平衡了精确度和召回率。LSTM 在 ASPD 数据集上优于 CNN,适合时间序列预测,但在 DCSPIV 上表现更佳,捕捉到更多的时序依赖。CNN 在 DCSPIV 上有效处理分类和回归任务,但未能超越 LSTM 的性能,因 LSTM 更擅长捕捉时序模式。

方法对比

Komori的研究使用CNN分析1985至2020年S&P 500的2D蜡烛图,3天预测准确率仅50%,支持随机游走假说。Nelson等人应用LSTM模型分析巴西股市15分钟数据,准确率为55.9%,未显著超越50%。本研究使用LSTM、CNN和逻辑回归模型,预测准确率在55%至75%之间,强调结合股票趋势与机器学习的优势。采用简单的DCF与EBITDA进行内在价值计算,准确率在60%至73%之间,表明基本面分析与机器学习结合的潜力。认为更复杂的行业特定基本面模型可进一步提高准确性。

限制

模型准确率超过55%,但存在局限性。数据集规模和范围有限,影响长期趋势捕捉。分析股票数量较少,限制模型适用性。不同行业的财务比率和属性重要性不同,需行业定制化。扩大数据集、延长时间范围及行业调整可提升模型实用性和可靠性。

总结

本研究使用LSTM、CNN和逻辑回归模型结合基本面分析预测股票趋势,准确率接近72%。所有模型在基本面分析上优于技术分析。方法简便,有助于识别盈利股票,利用财务报表和内在价值计算提升决策。研究为行业专业人士和学术研究者提供了有价值的见解,展示了机器学习模型在长期盈利投资策略中的潜力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值