RAG 技术通过结合外部知识库,有效提升了大语言模型(LLM)的性能。然而,RAG 系统在处理长序列生成时面临严重的延迟和效率挑战。最近,北京大学联合字节跳动的研究人员提出了一项名为 RAGCache[1] 的创新研究为这一难题提供了巧妙的解决方案。
关键发现
现有的优化方案主要聚焦于LLM推理加速本身,未能充分考虑RAG系统的特点,研究团队通过分析,揭示了三个重要发现:
-
性能瓶颈:RAG系统的主要瓶颈在于LLM生成步骤,注入的外部知识文档显著延长了处理序列。实验数据显示,注入的外部知识文档平均长度达3718个token,远超原始请求的348个token,而计算开销与序列长度呈正比,因此是导致性能显著下降的原因。
-
访问模式:检索请求呈现高度集中的特征,约3%的热门文档占据了60%的检索请求。这种模式为缓存优化提供了重要依据。
-
优化空间:通过缓存文档的中间计算状态,可以显著降低计算开销。实验表明,这种方法可将预填充延迟降低11.5倍。
RAGCache 的核心创新
RAGCache 的核心思想是通过多层动态缓存系统,高效缓存和重用检索文档的中间状态,从而显著提升 RAG 系统的性能。
其主要创新点包括:
-
知识树结构: RAGCache 设计了一种知识树结构来组织缓存的文档状态。这种树状结构巧妙地处理了 RAG 系统中文档检索的顺序敏感性问题。
例如,考虑两个文档序列:[D1, D3]和[D2, D3]。尽管 D3 在两个序列中都出现,但由于前面文档的不同,其 key-value 张量在各自序列中的值是不同的。知识树结构能够高效管理这些变化,确保快速检索的同时保持文档顺序。
-
前缀感知的贪心双重大小频率(PGDSF)替换策略: RAGCache 引入了一种复杂的缓存替换策策略,综合考虑了多个因素:
这种策略确保最有价值的文档状态能够留在缓存中,最大化命中率并最小化重复计算。
-
文档顺序
-
key-value 张量的大小
-
访问频率
-
访问时间的新近性
-
多层缓存: RAGCache 实现了一个跨 GPU 和主机内存的分层缓存系统。这种方法允许高效利用更快但容量有限的 GPU 内存,同时利用主机内存的更大容量来存储较少访问的状态。
例如,频繁访问的文档状态可能存储在 GPU 内存中以实现快速访问,而不常用的状态则保存在主机内存中。这种分层方法同时优化了速度和容量。
-
动态推测流水线: RAGCache 最具创新性的特征之一是其通过动态推测流水线重叠向量检索和 LLM 推理的能力。
具体工作流程如下:
-
随着向量搜索的进行,RAGCache 将中期结果发送给 LLM 进行推测生成。
-
如果检索到的文档发生变化,系统会适应性地启动新的推测生成。
-
这种方法最小化了空闲时间,可以显著减少端到端延迟。
性能提升
RAGCache 取得的结果令人印象深刻:
-
与 vLLM+Faiss 相比,首个 token 生成时间(TTFT)最高减少 4 倍
-
与 vLLM+Faiss 相比,吞吐量最高提升 2.1 倍
-
与 SGLang 相比,TTFT 最高减少 3.5 倍
-
与 SGLang 相比,吞吐量最高提升 1.8 倍
这些性能提升在不同模型和检索设置下都保持一致,展示了 RAGCache 方法的稳健性。
实际应用
RAGCache 的改进对广泛的应用有重要影响:
-
问答系统: 对于需要外部知识的复杂查询,可以实现更快的响应时间。
例如,在一个客户服务聊天机器人系统中,当用户询问"如何申请退款"时,RAGCache 能够快速从缓存中检索相关政策信息,大大缩短响应时间。
-
内容生成: 更高效地创建上下文感知的内容,适用于聊天机器人或自动写作助手等应用。
比如,在新闻摘要生成任务中,RAGCache 可以快速检索和缓存相关背景信息,使得生成的摘要更加准确和全面。
-
研究工具: 为处理大型数据集的研究人员和分析师提供更快的相关信息访问。
在科研领域,RAGCache 可以加速文献综述过程,研究人员能够更快地检索和比较大量相关论文的关键信息。
结论
RAGCache 代表了优化检索增强生成系统的重要进展。通过解决长序列生成和计算开销的核心挑战,它为更具响应性和效率的 AI 应用铺平了道路,使得先进的 AI 能力在实际应用中更易于实现和使用。
随着 LLM 的不断发展和知识密集型任务需求的增长,像 RAGCache 这样的系统将在使先进 AI 能力更易获取和实用化方面发挥关键作用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。