[RAG] Meta-Chunking: 通过逻辑感知学习高效的文本分段

本文是由人大提出的,旨在解决在检索增强生成(RAG)系统中,文本分段这一关键方面被忽视的问题。具体来说,传统文本分段方法(如基于规则或语义相似性)在捕捉句子间深层语言逻辑联系方面存在不足,导致在知识密集型任务(如开放域问答)中的性能受到影响。本文通过引入Meta-Chunking的概念及其两种实现策略(边际采样分段和困惑度分段),解决了以下几个关键问题:

逻辑连贯性问题

  • 问题:传统文本分段方法往往基于规则或语义相似性,难以捕捉句子间的深层逻辑联系(如因果、过渡、并行和渐进关系)。

  • 解决方案:Meta-Chunking通过利用LLMs的强大理解和推理能力,设计了边际采样分段和困惑度分段策略,精确识别文本分段边界,确保分段后的文本块具有逻辑连贯性。

资源和时间效率问题

  • 问题:现有的文本分段方法(如LumberChunker)需要使用高性能的LLMs(如Gemini模型),导致资源和时间成本显著增加。

  • 解决方案:边际采样分段有效减少了文本分段对模型大小的依赖,使推理能力相对较弱的小型语言模型也能胜任此任务。困惑度分段进一步提高了处理效率,实现了资源和时间的节省。

细粒度和粗粒度分段的平衡问题

  • 问题:仅通过调整阈值来控制块大小有时会导致块大小不均匀,难以满足用户的多样化分段需求。

  • 解决方案:提出了一种结合Meta-Chunking与动态合并的策略,旨在灵活应对不同的分段要求,在细粒度和粗粒度文本分段之间取得有效平衡。

长文本处理问题

  • 问题:处理较长文本时,传统的分段方法可能导致上下文连贯性丧失或GPU内存溢出。

  • 解决方案:在困惑度分段中引入键值(KV)缓存机制,在保持句子间逻辑连贯性的前提下计算困惑度,从而优化GPU内存和计算准确性。

跨语言适应性问题

  • 问题:小模型在跨语言适应性方面存在局限性,难以直接应用于多语言文本分段。

  • 解决方案:通过实验验证,中等规模的模型(如1.5B参数级别)在处理不同长度的文本分段时能在性能和效率之间保持出色平衡。

通过上述解决方案,本文提出的Meta-Chunking方法显著提升了基于RAG的单跳和多跳问答性能,同时在效率和成本节约方面表现出优越性能,解决了传统文本分段方法在逻辑连贯性、资源和时间效率、细粒度和粗粒度分段平衡、长文本处理以及跨语言适应性等方面的不足。

Meta-Chunking

Meta-Chunking是一种创新文本分段技术,利用LLMs的能力灵活地将文档分割成逻辑连贯的独立块。方法是基于一个核心原则:允许块大小的可变性,以更有效地捕捉和保持内容的逻辑完整性。这种粒度的动态调整确保每个分段块包含一个完整且独立的表达,从而避免分段过程中逻辑链的中断。这不仅增强了文档检索的相关性,还提高了内容清晰度。

如上图所示,方法整合了传统文本分段策略的优势,如遵守预设块长度约束和确保句子结构完整性,同时在分段过程中增强了保证逻辑连贯性的能力。关键在于引入了一个介于句子级和段落级文本粒度之间的新概念:Meta-Chunking。一个元块由段落中顺序排列的句子集合组成,这些句子不仅共享语义相关性,更重要的是包含深层语言逻辑联系,包括但不限于因果、过渡、并行和渐进关系。这些关系超越了单纯的语义相似性。为了实现这一目标,论文中设计和实现了以下两种策略。

边际采样分段

给定一段文本,初始步骤将其分割成一系列句子,记为,最终目标是进一步将这些句子分割成若干块,形成新集合,每个块包含原始句子的连贯分组。该方法可以表述为:

其中表示二分类决策,表示在和之间形成指令,关于它们是否应合并,其中包含单个句子或多个句子。通过模型获得的概率,我们可以推导出两个选项之间的概率差异。随后,通过将与阈值进行比较,可以得出两个句子是否应分段的结论。对于的设置,我们最初将其赋值为0,然后通过记录历史的并计算其平均值进行调整。

困惑度分段

同样,论文中将文本分割成句子,并使用模型计算每个句子基于前面句子的困惑度:

其中表示中的总token数,表示中的第个token,表示所有在之前的token。为了定位文本分段的关键点,算法进一步分析的分布特征,特别是识别最小值:

这些最小值被视为潜在的块边界。如果文本超出LLMs或设备的处理范围,论文策略性地引入键值(KV)缓存机制。具体来说,文本首先根据token分成若干部分,形成多个子序列。随着困惑度计算的进行,当GPU内存即将超过服务器配置或LLMs的最大上下文长度时,算法适当地移除先前部分文本的KV对,从而不会牺牲太多的上下文连贯性。

困惑度分段的理论分析

LLMs旨在学习一个分布¥Q¥,使其接近样本文本的经验分布。为了量化这两个分布之间的接近程度,通常使用交叉熵作为度量。在离散场景下,相对于的交叉熵正式定义如下:

其中表示经验熵,是和之间的Kullback-Leibler(KL)散度。LLMs的困惑度在数学上定义为:

需要注意的是,由于是不可优化的且有界,真正影响不同LLMs困惑度计算差异的是KL散度,它作为评估分布差异的度量。KL散度越大,两个分布之间的差异越大。此外,高困惑度表明LLMs对真实内容的认知幻觉,这些部分不应被分段。

另一方面,Shannon(1951)通过函数近似任何语言的熵:

其中表示文本序列中的个连续token ,熵可以表示为:

然后,基于论文附录A.1中的证明,对所有成立,可以推导出:

通过上面的公式可以观察到对于大规模文本处理任务,增加上下文长度往往会降低交叉熵或困惑度,这一现象反映了LLMs在捕获更广泛的上下文信息后进行更有效的逻辑推理和语义理解的能力。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值