论文速递丨ACM MM 2024:多模态对话情绪识别校准

论文链接:

https://dl.acm.org/doi/abs/10.1145/3664647.3681515

01 任务

对话情绪识别(Emotion Recognition in Conversations,ERC),旨在对一段对话中的话语进行情绪分类。任务的输入是一段连续的对话,输出是这段对话中所有话语的情绪,图1给出了一个简单的示例。由于对话本身具有很多要素,话语的情绪识别并不简单等同于单个句子的情绪识别,而是需要综合考虑对话中的背景、上下文、说话人等信息,这些都是对话情绪识别任务中独特的挑战。

图1 对话情绪识别示例

02 动机

现有的多模态对话情绪识别(Multimodal Emotion Recognition in Conversations, MERC)研究更多地聚焦于提升性能指标,而在模型可靠性方面的探索却相对不足。现有方法在移除某些模态或上下文线索后,样本的预测置信度反而增加(如图2所示)。这种反直觉现象暴露了模型在模态和上下文依赖上的不平衡,定义这类样本为不确定样本。这不仅暴露了现有方法在决策可靠性上的局限性,还违背了“信息旨在消除不确定性”的基本定义。值得注意的是,即便是一些在性能上表现更为先进的模型(如M3Net),其可靠性可能仍不及较为简单的模型(如DialogueRNN)。

图2 动机示例

03 方法

3.1****总体框架:

本文提出了一种用于多模态对话情绪识别的校准框架—CMERC,旨在解决现有模型在处理情绪推断时可靠性不足的问题。框架的设计从三个关键校准方向入手(如图3所示):(1)课程学习校准(CL):引入课程学习策略,采用逐步训练的方法,将不确定样本逐步引入模型训练中。(2)混合对比学习校准(HSCL):设计了一种混合对比学习方法,通过增大不确定样本与其他样本之间的距离,增强模型对引起不确定性因素的感知能力。(3)置信度约束校准(CC):引入置信度约束机制,通过对不确定样本的惩罚,优化模型的置信度估计能力。

图3 CMERC整体框架图

3.2****具体模型:

(1) 课程学习校准

为了设计适用于MERC模型的课程,我们通过评估样本去除操作后的置信度水平,来衡量不同对话在多模态和上下文中的难度。直观来说,当MERC模型面对不确定的样本时,由于预测置信度的可靠性降低,模型往往难以做出准确的决策,这会对学习过程造成阻碍。随着对话中不确定样本数量的增加,模型的置信度愈加不稳定,从而使得情绪识别的难度也随之上升,情绪的精准把握变得更加复杂。

其中,表示说话者内部和说话者间的上下文,为目标类别的索引,为移除某一模态或上下文后MERC模型的预测分布。表示迷你批次中的话语总数,而表示参与迷你批次的说话者总数。我们采用baby step训练调度策略,以安排对话顺序并组织训练过程,其具体流程如算法1中第1至4行所描述。

(2) 混合对比学习校准

理解导致样本不确定性的因素,对于提升MERC模型在训练过程中的可靠性至关重要。为此,我们提出了一种混合对比学习(HSCL)框架,该框架将针对模态和上下文的对比学习组件有机融合在一起。这一方法能够有效区分因模态或上下文信息缺失而引发的不确定性样本,并捕捉其细微的关联与差异。通过此框架,MERC模型可以深入学习训练过程中导致不确定性的根本因素,从而显著提升整体性能与效果。

其中,表示模型的隐藏表示,表示伪标签集,其生成过程详见算法1中的第14至17行。为温度参数,表示余弦相似度函数。以音频模态和说话者内部上下文为例,模态和上下文特定的对比学习损失的计算过程详见算法1中的第18至27行。

(3) 置信度约束校准

为了提高MERC模型预测置信度的可靠性,采用一种正则化约束方法,通过计算移除操作后置信度增加的差异,作为对小批量数据的约束条件。

(4) 模型训练

我们通过最小化以下四项损失的总和来联合训练我们提出的框架。

04 实验

实验数据集:IEMOCAP,MELD

实验评价指标:Accuracy (Acc),Weighted-average F1 (W-F1),Expected Calibration Error (ECE),Maximum Calibration Error (MCE),Root Mean Square Calibration Error (RMSCE),Area Under the Receiver Operating Characteristic Curve (AUROC),Area Under the Precision-Recall Curve (AUPRC),Confidence Enhancement Level (CEL)

实验结果与结论:

表1 测试集中不确定样本的百分比(%)

图4 IEMOCAP测试集中不确定样本的各种模态或上下文的贡献

表2 IEMOCAP(6分类)和MELD上的实验结果

表3 IEMOCAP(6分类)和MELD上的泛化分析

图5 CC下CF值的分布

图6 IEMOCAP验证集中各种超参数的CMERC的提升W-F1

1.如表1所示,在不同的MERC模型中,不确定样本比例显著,尤其是在移除模态和上下文时超过90%,反映出MERC模型在置信度预测方面的挑战性,即便是性能更高的模型(如M3Net)也难以避免。

2.如图4所示,通过MM-SHAP方法分析了不确定样本的来源,发现其主要原因是模型过于依赖文本模态,且难以合理权衡不同上下文的影响。

3.如表2所示,CMERC在W-F1得分上的优势,分别提升了IEMOCAP和MELD数据集的得分,同时降低了CEL值,进一步证明了该方法的优越性。而且我们方法在各项指标上的表现优于其他置信度校准方法。

4.如表3所示,在不同的MERC模型上进行实验,结果显示所有方法的CEL得分一致下降,W-F1得分提高,其他置信度估计指标也表现出类似的提升,证明了CMERC在不同MERC模型中的泛化能力。

5.如图5所示,CF值分布显示较小的值对应较高的密度,这突显了CC在处理不确定样本时的有效性。

6.如图6所示,调整CMERC中损失函数的超参数后,模型性能呈先增后降的趋势,最终趋于稳定,且始终优于超参数为零的情况,体现了CMERC在不同超参数设置下的有效性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值