-
在当今数字化时代,企业数字化转型已成为必然趋势。然而,许多企业在数字化转型的道路上却感到迷茫,不知道自己的企业处于哪个阶段,也不知道未来的发展方向。
-
GB/T 43439-2023 标准中定义了数字化转型的五个成熟度等级,为企业提供了一个清晰的数字化转型路线图。
-
本文将详细解析这五个成熟度等级,帮助企业了解自身在数字化转型过程中的位置和目标。
一、数字化转型的五个成熟度等级
GB/T 43439-2023 标准中定义的数字化转型成熟度等级,主要包括以下五个方面:
1. 初始级:
• 特征:企业数字化转型处于起步阶段,主要关注信息技术的应用,以提高工作效率和降低成本为主要目标。
• 实例:一家小型制造企业,通过引入 ERP 系统,实现了生产、采购、销售等环节的信息化管理,提高了工作效率和数据准确性。
2. 可重复级:
• 特征:企业开始建立数字化转型的基础架构,包括数据管理、业务流程优化等方面。企业能够重复使用数字化转型的成果,提高企业的竞争力。
• 实例:一家中型零售企业,通过建立数据仓库和数据分析平台,实现了对客户数据的深度分析,优化了营销策略,提高了客户满意度和销售额。
3. 已定义级:
• 特征:企业数字化转型进入到规范化阶段,建立了完善的数字化转型管理体系,包括战略规划、项目管理、风险管理等方面。企业能够根据自身的战略目标,制定数字化转型的规划和方案。
• 实例:一家大型金融企业,通过建立数字化转型战略规划和项目管理体系,实现了对数字化转型项目的有效管理和控制,提高了项目的成功率和投资回报率。
4. 量化管理级:
• 特征:企业数字化转型进入到精细化阶段,建立了数字化转型的指标体系,能够对数字化转型的效果进行量化评估和分析。企业能够根据量化评估的结果,及时调整数字化转型的策略和方案。
• 实例:一家科技企业,通过建立数字化转型指标体系和数据分析平台,实现了对数字化转型效果的量化评估和分析,及时调整了数字化转型的策略和方案,提高了企业的竞争力和创新能力。
5. 优化级:
• 特征:企业数字化转型进入到持续优化阶段,建立了数字化转型的持续优化机制,能够不断地优化数字化转型的效果。企业能够根据市场的变化和客户的需求,及时调整数字化转型的方向和策略。
• 实例:一家互联网企业,通过建立数字化转型持续优化机制和敏捷开发团队,实现了对数字化转型效果的持续优化和创新,满足了市场的变化和客户的需求,提高了企业的竞争力和用户体验。
二、企业如何根据自身情况评估数字化转型的成熟度
1. 明确企业数字化转型的目标和战略
企业需要明确自己的数字化转型目标和战略,以便确定评估的重点和方向。
2. 收集相关数据和信息
企业需要收集与数字化转型相关的数据和信息,包括业务流程、数据管理、技术架构、人才发展、组织文化等方面的情况。
3. 进行自我评估
企业可以根据 GB/T 43439-2023 标准中的数字化转型成熟度模型,对自己在每个维度上的成熟度进行评估。评估可以采用问卷调查、访谈、案例分析等方法。
4. 制定改进计划
根据自我评估的结果,企业可以制定改进计划,明确改进的目标、措施和时间表。改进计划可以包括优化业务流程、加强数据管理、提升技术架构水平、培养数字化人才、营造数字化文化等方面的内容。
5. 持续监控和评估
企业需要持续监控和评估数字化转型的进展情况,及时调整改进计划,确保数字化转型的目标得以实现。
三、数字化转型成熟度等级的应用价值
1. 为企业数字化转型提供科学依据
数字化转型成熟度等级可以为企业提供一个科学、全面的评估工具,帮助企业了解自己在数字化转型方面的现状和差距,为企业数字化转型提供科学依据。
2. 帮助企业制定数字化转型战略
数字化转型成熟度等级可以帮助企业明确自己的数字化转型目标和战略,为企业制定数字化转型战略提供参考。
3. 促进企业数字化转型的持续发展
数字化转型成熟度等级可以帮助企业持续监控和评估数字化转型的进展情况,及时调整改进计划,促进企业数字化转型的持续发展。
四、结论
数字化转型是企业发展的必然趋势,也是企业提升竞争力的重要手段。
GB/T 43439-2023 标准中定义的数字化转型成熟度等级,为企业提供了一个清晰的数字化转型路线图。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。