人工智能驱动的 Agent 是一个新兴领域,没有既定的理论框架来定义、开发和评估它们。这篇文章是尽力从现有文献中构建框架的尝试,但它将随着该领域的发展而发展。
🤖 Agent 概述
AI Agent 由其所处的环境(例如游戏、互联网或计算机系统)和它通过可用工具可以执行的操作集合构成。这一双重定义是理解 Agent 如何工作的基础。
👨💻 Agent 示例
下图展示了一个基于 GPT-4 构建的 Agent 示例。环境是计算机,它可以访问终端和文件系统。操作集合包括导航、搜索文件、查看文件等。
🧰 工具的重要性
工具使 Agent 能够感知其环境(通过读取操作)并对其进行修改(通过写入操作)。添加合适的工具可以极大地扩展代理的能力,从执行计算到访问实时信息。
💡 工具选择
更多的工具赋予 Agent 更多的能力,但也使它们更难有效地使用这些工具。找到合适的工具集需要经过仔细的实验和使用模式分析。
🧩 规划
有效的 Agent 需要强大的规划能力,将复杂任务分解为可管理的步骤。这种规划应理想地与执行解耦,以便在执行可能昂贵或耗时的操作之前进行验证。
📍 基础模型可以作为规划者
尽管关于 LLM 是否能够真正进行规划存在争议,但它们可以成为规划系统的有效组成部分,特别是在结合了适当的工具和反思能力时。
⛓️ Multi-Agent 系统
大多数实际的 Agent 实现都是 Multi-Agent 系统,其中不同的组件负责计划生成、验证和执行。这样的关注点分离使得更好的专业化和错误处理成为可能。
🎛️ 控制流
Agent 的计划可以涉及多种控制流,超越简单的顺序执行,包括并行执行、条件语句和循环。然而,较复杂的控制流更难以正确生成和执行。
💭 反思与错误修正
虽然不是严格要求,但反思能力(评估进展并纠正错误的能力)显著提升 Agent 的性能。这可以通过自我批评或独立的评估组件来实现。
❌ 失败模式
Agent 可能以多种方式失败,包括规划失败(无效的工具或参数)、工具执行失败(错误的输出)和效率失败(耗时过长或使用过多资源)。
📈 评估
适当的 Agent 评估需要考虑多个指标,包括成功率、效率、成本和所用时间。这应当在不同任务中进行,并与合适的基准进行比较。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。