还在为OpenAI Deep Research的订阅费肉疼吗?Auto-Deep-Research横空出世,拯救你的钱包!这是一个完全自动化、开源且经济高效的个人AI助手,基于强大的AutoAgent框架,让你的研究工作事半功倍。
➤➤ 核心特性
-
性能怪兽
:据说性能直逼OpenAI Deep Research
-
各种LLM
:支持OpenAI、Anthropic、Deepseek,还是vLLM、Grok、Huggingface
-
灵活互动
:支持函数调用和非函数调用LLM,怎么舒服怎么来。
-
省钱小能手
:开源对标OpenAI Deep Research
-
文件管家
:轻松处理文件上传,增强数据互动。
-
一键启动
:只需一个简单的
auto deep-research
命令,无需任何配置,开箱即用,懒人必备。
➤➤ 安装教程
➤➤➤ 1. 环境准备
首先,最好的是你需要一个干净的Python环境。推荐使用conda。
conda create -n auto_deep_research python=3.10
➤➤➤ 2. 下载Auto-Deep-Research
从GitHub上克隆Auto-Deep-Research的代码库。
git clone https://github.com/HKUDS/Auto-Deep-Research.git
➤➤➤ 3. 安装依赖
使用pip安装项目依赖。
pip install -e .
➤➤➤ 4. 配置API密钥
创建一个名为.env
的环境变量文件,填入你想要使用的LLM API密钥。记住,不是每个密钥都必须填写,按需使用,避免浪费。
➤➤➤ 5. 启动Auto-Deep-Research(windows)
运行auto deep-research
命令,让你的AI助手开始工作。
auto deep-research
下面会提到为什么只使用命令:auto deep-research
官网说根据需要配置一些选项,例如:
-
--container_name
:Docker容器的名称(默认:‘deepresearch’)。
-
--port
:容器的端口(默认:12346)。
-
COMPLETION_MODEL
:指定要使用的LLM模型,参考📌Litellm的命名规范。
-
DEBUG
:启用调试模式,查看详细日志。
-
但是测试下来使用
COMPLETION_MODEL
却会报错。
并且,github上所说的运行命令:
COMPLETION_MODEL=gpt-4o auto deep-research
运行报错
报错是出现不希望出现的参数而不是模型名称错误,所以以上两种运行方式都是错误的。
➤➤ 更多姿势
Auto-Deep-Research支持多种LLM提供商,配置方法大同小异,只需设置相应的API密钥,并在启动命令中指定模型即可。具体方法请参考GitHub仓库中的详细文档(官方文档命令windows系统下运行有问题)。
➤➤ 结束语
Auto-Deep-Research是一个充满潜力的开源项目,它将帮助你以更低的成本完成更高效的研究工作。
现在一直处于环境创建(很长时间)
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。