智能体(Agent)与大模型:AI世界的“超级大脑”与“全能战士”

在人工智能的浪潮中,大模型(如deepseek、文心一言)智能体(Agent)成为两大核心概念。它们看似相似,却承担着截然不同的角色:大模型是“知识渊博的超级大脑”,而智能体则是“能自主行动的决策者”。理解二者的关联与差异,是打开下一代AI应用的关键钥匙。

一、大模型:AI世界的“原子能力”

大模型是深度学习的巅峰产物,通过海量数据训练获得通用认知能力

  • 核心功能:文本生成、逻辑推理、图像识别、代码编写等。

  • 局限性:被动响应指令,缺乏主动目标和环境感知能力。

  • 类比:像一本百科全书,能回答复杂问题,但无法主动解决问题。

典型应用

  • 内容生成:自动撰写文章、营销文案。

  • 客服问答:基于知识库的标准化回复。

  • 数据分析:从结构化数据中提取规律。

二、智能体:具备“行动力”的AI执行官

智能体(Agent)是能主动感知环境、制定目标并执行动作的AI系统。其核心在于“闭环能力”:

  • 核心要素

  • 感知模块(如摄像头、传感器、文本输入);

  • 决策模块(规划、推理、调用工具);

  • 行动模块(操作API、控制硬件、输出结果)。

  • 关键技术:大模型+强化学习+工具调用(如OpenAI的Function Calling)。

典型应用

  • 自动驾驶:实时感知路况、规划路径、控制车辆。

  • AI助理:自动订机票(先查天气、比价、支付)。

  • 工业机器人:动态调整生产线流程。

三、大模型与智能体的共生关系

1. 大模型是智能体的“大脑皮层”

  • 赋予智能体复杂推理能力:例如,让客服Agent理解用户隐含需求,而非机械回复。

  • 提供工具调用接口:大模型可解析指令,调用天气API、数据库等外部工具。

2. 智能体是大模型的“能力放大器”

  • 突破被动性:将大模型的“知识”转化为动态场景中的行动链

  • 解决幻觉问题:通过环境反馈(如代码运行结果)修正大模型的输出。

案例对比

  • 单纯大模型:回答“如何策划一场旅行”,生成文字方案。

  • 智能体:自动查询机票价格、推荐酒店、生成行程表并预订。

四、关键区别:任务边界与主动性

在这里插入图片描述

五、未来趋势:从“功能模块”到“AI社会”

  • 大模型基建化:成为智能体的默认“认知引擎”,如GPT-4驱动AutoGPT。

  • 智能体垂直化:医疗、金融、制造等领域将出现行业专属Agent

  • 群体协作:多个智能体分工协作(如谈判Agent+法务Agent完成合同签署)。

结语:大模型与智能体的结合,正在将AI从“工具”进化为“数字生命体”。未来的竞争,不仅是算法之争,更是谁能打造出更高效、更自主的AI行动者。而这场革命的终点,或许是真正的通用人工智能(AGI)。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值