摘要
最近的进展表明,大型语言模型(LLMs)在解决复杂推理问题时容易出现幻觉,导致错误结果。为解决这一问题,研究人员结合知识图谱(KGs)以提高LLMs的推理能力。然而,现有方法面临两个限制:1)它们通常假设问题的所有答案都包含在KGs中,忽略了KGs的不完整性问题;2)它们将KG视为静态的知识库,忽略了KGs中固有的隐含逻辑推理结构。本文介绍了SymAgent,一种创新的神经符号代理框架,实现了KGs与LLMs之间的协同增强。我们将KGs概念化为动态环境,并将复杂推理任务转化为多步骤交互过程,使KGs能够深入参与推理过程。SymAgent由两个模块组成:代理规划器和代理执行器。代理规划器利用大型语言模型(LLM)的归纳推理能力从知识图谱(KGs)中提取符号规则,指导高效的问题分解。代理执行器自主调用预定义的动作工具来整合来自知识图谱和外部文档的信息,解决知识图谱不完整的问题。此外,我们设计了一个自学习框架,包括在线探索和离线迭代策略更新阶段,使代理能够自动合成推理轨迹并提高性能。实验结果显示,使用较弱LLM(即7B系列)的SymAgent与各种强大的基线相比,表现出更好或相当的性能。
进一步分析显示,我们的代理可以识别缺失的三元组,促进知识图谱的自动更新。
核心速览
研究背景
1.研究问题:这篇文章要解决的问题是大型语言模型(LLMs)在处理复杂推理问题时容易出现幻觉,导致错误结果。为了应对这一问题,研究人员将知识图谱(KGs)引入到LLMs中以提高推理能力。然而,现有方法存在两个局限性:一是假设KG中的所有答案都包含在KG中,忽略了KG的不完整性问题;二是将KG视为静态的知识库,忽视了KG中隐含的逻辑推理结构。
2.研究难点:该问题的研究难点包括:语义差距、KG的不完整性以及有限监督下的学习。具体来说,需要将KG的符号结构与LLMs的神经表示对齐,处理KG信息不足的情况,并在仅有自然语言输入输出对的情况下解锁LLMs的全部推理潜力。
3.相关工作:该问题的研究相关工作有:语义解析方法和检索增强方法。语义解析方法将问题解析为可执行的正式语言(如SPARQL)并在KG上进行精确查询以获得答案。检索增强方法从KG中检索相关事实三元组并将其输入到LLMs中以帮助生成最终答案。
研究方法
这篇论文提出了SymAgent,一种创新的神经符号代理框架,用于解决复杂推理问题。具体来说,
1.Agent-Planner模块:该模块利用LLMs的归纳推理能力从KG中提取符号规则,指导高效的问题分解。具体步骤如下:
-
使用BM25从训练集中检索出一组与问题结构相似的种子问题。
-
对每个种子问题,采用广度优先搜索(BFS)在KG中采样一组闭路径。
-
将这些闭路径泛化为符号规则,并作为提示输入到SymAgent中以生成适当的规则体。
2.Agent-Executor模块:该模块通过调用预定义的动作工具集来整合KG和外部文档的信息,解决KG不完整性的问题。动作空间包括以下功能工具:
-
getReasoningPath:接收子问题并返回潜在的象征规则。
-
wikiSearch:在KG信息不足时从维基百科或互联网检索相关文档。
-
extractTriples:从检索到的文档中提取与当前查询实体和关系相关的三元组。
-
searchNeighbor:返回KG中特定实体在给定关系下的邻居。
-
finish:返回最终答案列表,表示推理过程结束。
3.自学习框架:为了解决缺乏注释的推理数据问题,提出了一个自学习框架,包括在线探索和离线迭代策略更新两个阶段。具体步骤如下:
-
在线探索阶段:基础代理通过与环境的自主交互合成一组初始轨迹,并使用基于结果的奖励机制进行优化。
-
离线迭代策略更新阶段:在初始轨迹集上进行微调,并通过重复的自我探索和轨迹合并过程不断提高性能,直到验证集上的性能提升可以忽略不计。
实验设计
1.数据集:实验采用了三个广泛使用的知识图谱问答数据集:WebQuestionSP(WebQSP)、Complex Web Questions(CWQ)和MetaQA-3hop。为了模拟不完整的KG,采用广度优先搜索方法从问题实体到答案实体提取路径,并随机移除一些三元组。
2.基线方法:评估了SymAgent与三种不同的LLM骨干模型(Mistral-7B、LLaMA2-7B和Qwen2-7B)的性能比较。基线方法包括基于提示的方法(CoT和ReAct)以及强基线方法(ToG和RoG)。
3.实现细节:使用LoRA进行微调,初始学习率为2e-5,序列长度为4096,训练轮数为3,批量大小为4。推理过程中使用vLLM加速推理。所有训练和推理实验均在4个NVIDIA A800 80G GPU上进行。
结果与分析
1.性能比较:实验结果表明,SymAgent在所有数据集上均表现出优越的性能。与基线方法相比,SymAgent在不同LLM骨干模型上均实现了显著的提升。例如,Qwen2-7B骨干模型的Hits@1提高了37.19%,Accuracy提高了16.87%,F1得分提高了30.17%。
2.消融研究:通过消融实验分析了各个组件的贡献。结果表明,规划模块、执行模块和自学习框架都是必不可少的,缺少任何一个组件都会对性能产生显著影响。
3.自学习框架分析:自学习框架的迭代次数对模型性能有显著影响。自我细化和启发式合并的协同作用显著提高了模型性能。与从教师模型蒸馏的方法相比,自学习框架在所有数据集上均表现更好。
4.提取三元组的质量:通过增强KG并测试检索增强生成模型RoG的性能,验证了所提取三元组的质量足以集成到现有的KG中。
5.错误分析:错误分析表明,WebQSP的错误主要是推理错误(94.34%),而CWQ和MetaQA-3hop的错误分布更为多样化,显著存在超出最大步数(EMS)的错误,表明未来在这些领域有改进的空间。
总体结论
这篇论文提出了SymAgent,一种自动代理框架,通过结合LLMs和结构化知识进行复杂推理。SymAgent利用KG中的象征规则指导问题分解,自动调用动作工具解决KG不完整性问题,并采用自学习框架进行轨迹合成和持续改进。广泛的实验证明了SymAgent在复杂推理场景中的优越性,展示了促进KG和LLMs相互增强的潜力。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。