最新论文 | 慕尼黑工业大学团队提出GeoLangBind, 统一六种遥感数据模态的视觉-语言模型

论文介绍

题目:GeoLangBind: Unifying Earth Observation with Agglomerative Vision-Language Foundation Models

期刊:https://arxiv.org/abs/2503.06312

代码:https://github.com/xiong-zhitong/GeoLB-SigLIP

单位:慕尼黑工业大学,赫姆霍兹德累斯顿罗森多夫研究中心HZDR

img

创新点

  • 语言桥接多模态遥感数据:利用共享的语言嵌入空间对齐不同的 EO 数据模态(RGB、SAR、多/高光谱等)。
  • 大规模多模态数据集 GeoLangBind-2M:涵盖 6 种遥感模态,共 205 万对图像-文本数据,提升跨模态学习能力。
  • 模态感知知识聚合(MaKA):结合多个教师模型(SigLIP、DINOv2、ViT)进行知识蒸馏,提高特征对齐效果。
  • 渐进式权重合并(Progressive Weight Merging):分阶段合并不同模态的模型权重,提升跨模态泛化能力。
  • 零样本能力增强:在 23 个遥感任务中表现优异,支持分类、分割和跨模态检索,无需特定任务的训练。

数据

GeoLangBind 使用 GeoLangBind-2M 数据集,该数据集是目前规模较大的多模态地球观测(EO)图像-文本数据集,为遥感领域的视觉-语言模型训练而设计。

数据总量:2,050,983 组图像-文本对。

数据模态:涵盖 6 种主要的地球观测数据类型:

  • RGB(光学遥感):常规遥感影像,如 Sentinel-2、航空影像。
  • SAR(合成孔径雷达):如 Sentinel-1 数据,提供全天候、全时段观测能力。
  • 多光谱(MSI):来自 Sentinel-2,涵盖可见光和近红外波段。
  • 高光谱(HSI):如 EnMAP 数据,包含更精细的光谱信息。
  • 红外(IR):用于目标检测(如船只、热异常等)。
  • 地形高程(Elevation):数字高程模型(DEM)数据,描述地形变化。

数据来源:整合多个公开数据集,并通过自动文本生成扩充标注信息。

img

img

img

方法

GeoLangBind

GeoLangBind 是一个统一的视觉-语言基础模型,旨在整合和对齐不同的地球观测数据模态,包括RGB、多光谱、高光谱、SAR、红外和地形高程数据。

img

1. 波长感知动态编码器(Wavelength-aware Dynamic Encoder)

作用:

  • 处理不同模态的数据,使模型能够适应任意数量的光谱通道。
  • 通过编码波长信息,实现跨模态的特征对齐。

具体方式:

  • 每种数据模态的光谱波段具有不同的特性,如可见光(RGB)、近红外(NIR)、雷达波(SAR)。
  • 该编码器会为每个光谱波段分配特定的编码,并将其输入到轻量 Transformer 结构中,以学习跨模态的共享特征。
  • 采用动态卷积处理不同数量的光谱通道,使得模型能够适应不同模态的数据输入,而不受固定通道数的限制。

2. 模态感知知识聚合(Modality-aware Knowledge Agglomeration, MaKA)

作用:

  • 从多个预训练教师模型(SigLIP、DINOv2、ViT)提取知识,提高模型的特征对齐能力。
  • 通过模态特性增强学习,使模型能更好地理解各个遥感模态的特征。

具体方式:

  • 波长感知提示(Prompt)生成器:通过编码数据的光谱波段信息,生成适用于不同模态的提示向量,帮助模型区分不同类型的数据。
  • 模态感知归一化(Normalization):在特征标准化过程中,动态调整归一化参数,使得不同数据模态的特征能够在同一个空间中对齐。
  • 特征投影器(Feature Projector):负责将模型提取的特征转换为与教师模型特征匹配的形式,以便进行知识蒸馏。采用多种教师模型的特征进行对比学习,提高模型在不同数据模态上的泛化能力。

3. 渐进式多模态权重合并(Progressive Multimodal Weight Merging)

作用:

  • 解决不同数据模态的数据量不均衡问题,提升模型的跨模态泛化能力。
  • 通过逐步合并不同模态的模型权重,使得最终的模型能够适应多种数据类型,而不会因为某一类数据占比过高而导致性能偏差。

具体方式:

分阶段训练:

  • 首先,分别训练两个模型:

    • RGB 模型(在 RGB 数据子集上训练)
    • 其他模态模型(在非 RGB 数据子集上训练)
  • 第一阶段权重合并:先将 RGB 模型的权重与 SigLIP 预训练模型进行合并,以增强 RGB 数据的视觉表征能力。

  • 第二阶段权重合并:之后,将合并后的模型与“其他模态模型”进行进一步融合,以确保模型在多模态数据上的均衡性能。

  • 最终模型优化:采用简单但有效的线性权重合并策略,使得最终模型既能保持 RGB 数据的高质量特征,又能兼容多种遥感模态的特性。

结果与分析

GeoLangBind 在分类、检索和语义分割等任务上显著超越现有模型,尤其在零样本学习方面表现最佳,能够准确处理多模态遥感数据。相比 CLIP 和 RemoteCLIP,该方法在跨模态理解和泛化能力方面取得了更大提升,适用于更广泛的地球观测应用。

精度对比

img

img

可视化

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值