一文读懂 RAGFlow 知识库接入 Dify 的全流程

今天来给大家分享一下,如何将ragflow知识库接入dify,作为dify的外挂知识库。

一、RAGFlow中相关操作

一)配置模型

如果知识库配置RAPTOR策略的话,需要配置大模型,此处跟Dify上配置模型类似,rerank模型,embedding模型已经默认配置好,无需再配置,只需配置chat模型即可,配置上后,方便其他地方使用。

null

二)创建RAGFlow知识库

此处先以最简单配置。

null

null

null

三)获取ragflow接口密钥

null

四)获取知识库ID

null

二、Dify接入RAGFlow

一)添加外部知识库API

null

二)填写RAGFlow关键信息

① 自定义外部知识库名称

② 外部知识库接口base url

③ RAGFlow的API KEY

null

三)连接外部知识库

null

null

三、创建一个Dify聊天助手

一)应用基本信息

null

二)添加知识库为上下文

null

三)测试

1、聊天效果

null

2、请求日志查看

null

RAGFlow已经自带了中英文各种嵌入模型和rerank模型,到对应场景,配置参数时,自动默认好对应模型,这一点很赞!

通过其背部整合的深度文档解析器,可以针对文档布局进行分析,就像人有了一双眼睛,看到的不仅仅是文字,还有篇章布局,获取的文档信息更加丰富,层次维度更加多元。

我们可以根据情况,各取所长,融入更多自己的更多工作场景!

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,用户问的是RAGFlow知识库Dify知识库的对比,性能和功能方面。我需要先了解这两个产品的具体信息。RAGFlow好像是深度求索公司开源的,基于检索增强生成(RAG)的系统,支持多格式文件解析,还有自动文本图像分割。而Dify可能是一个AI应用开发平台,提供可视化工作流,可能更注重快速构建应用。 首先,性能方面,RAGFlow可能有更强的处理能力,比如高精度解析和异构数据混合检索,适合复杂场景。而Dify可能在处理速度上有优化,适合快速响应。然后功能上,RAGFlow支持多格式,深度处理,适合企业级需求;Dify可能更灵活,可视化强,适合开发者快速搭建应用。 用户可能需要选型建议,所以得比较两者的优缺点。比如企业需要处理复杂文档,RAGFlow更合适;如果需要快速开发应用,Dify更好。可能还要提到社区支持和部署方式,RAGFlow是开源,适合定制,而Dify可能有SaaS版本,方便使用。 还要检查是否有引用来源,但用户提供的参考里没有具体引用,所以可能不需要添加。确保回答结构清晰,分点比较性能和功能,最后给出选型建议。同时生成相关的问题,比如适用场景、技术架构差异、如何选择等。</think>### RAGFlow知识库Dify知识库对比分析 #### 1. **核心定位** - **RAGFlow**: 专注于基于检索增强生成(RAG)的文档解析与问答系统,支持多格式文件解析(如PDF、Word、Markdown)和复杂语义理解,适用于企业级知识库构建[^1]。 - **Dify**: 定位为AI应用开发平台,提供可视化工作流设计,支持快速搭建问答系统、聊天机器人等应用,注重开发效率与灵活性。 #### 2. **性能对比** | 维度 | RAGFlow | Dify | |---------------|-------------------------------------|-------------------------------------| | **解析能力** | 支持文本/图像混合解析,支持公式提取 | 依赖第三方解析工具(如Unstructured)| | **检索精度** | 异构数据混合检索(文本+向量) | 基于向量相似度的通用检索 | | **响应速度** | 侧重高精度,适合复杂场景 | 优化交互速度,适合轻量级应用 | #### 3. **功能差异** - **RAGFlow特色功能**: - 自动文本/图像分割与语义关联 - 多路召回策略(关键词+向量混合检索) - 支持公式、表格等非结构化数据提取 - **Dify特色功能**: - 可视化提示词编排与模型微调 - 多模型支持(GPT/Claude/本地模型) - 数据标注与持续学习能力 #### 4. **技术架构** ```mermaid graph LR A[RAGFlow] --> B(基于Python/Java混合架构) A --> C(支持私有化部署) D[Dify] --> E(全Python架构) D --> F(提供SaaS/私有化版本) ``` #### 5. **选型建议** - **选择RAGFlow的场景**: - 需要处理科研论文、技术文档等复杂格式 - 要求公式、表格等专业内容的高精度解析 - 企业级私有化部署需求 - **选择Dify的场景**: - 快速构建轻量级问答系统 - 需要多模型灵活切换 - 低代码开发需求
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值