第一章 线性方程组(线性代数)

线性linear VS 非线性nonlinear

算术algebra VS 几何geometria

从线性空间到线性空间的线性变换,线性变换是线性空间的运动,线性空间的基本对象是向量

线性方程组

运用案例:百鸡问题,小行星轨道,网络流量

相关概念:元,次

一、方程组

1.齐次线性方程组:常数项全为零 VS 非齐次线性方程组:常数项不全为零

2.相容:方程组有解

3.等价:两方程组有相同解集

线性方程组的两个基本问题:解的存在性问题,解的唯一性问题

线性方程组的三个初等变换:对换,数乘,倍加

二、矩阵

系 数 矩 阵 A m × n , b ⃗ = [ b 1 b 2 ⋮ b m ] , 增 广 矩 阵 B m × ( n + 1 ) , x ⃗ = [ x 1 x 2 ⋮ x n ] 简 易 表 达 : B m × ( n + 1 ) = [ A m × n , b → ] 简 记 : A m × n ⋅ x n × 1 → = b m × 1 → ( 矩 阵 ⋅ 向 量 = 向 量 ) 系数矩阵A_{m\times n},\vec{b}=\begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix},增广矩阵B_{m\times(n+1)},\vec{x}=\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \\简易表达:B_{m\times(n+1)}=[A_{m\times n}, \overrightarrow{b}] \\简记:A_{m\times n} \cdot \overrightarrow{x_{n\times 1}}=\overrightarrow{b_{m\times 1}} (矩阵\cdot向量=向量) Am×nb =b1b2bm广Bm×(n+1)x =x1x2xnBm×(n+1)=[Am×n,b ]Am×nxn×1 =bm×1 =
系数矩阵 A A A的行最简形的 非零行数(主元列数),记为 r ( A ) r(A) r(A)(有效方程个数) . 增广矩阵 [ A , b → ] [A, \overrightarrow{b}] [A,b ]的行最简形的非零行数(主元列数),记为 r ( A , b ) r(A,b) r(A,b) .

自 由 变 量 个 数 = 总 未 知 数 − r ( A ) 自由变量个数=总未知数-r(A) =r(A)

矩阵的三个初等行变换(可逆)对换变换,数乘变换,倍加变换

两矩阵行等价:两矩阵可通过初等行变换相互转化

两方程组同解:两线性方程组的增广矩阵行等价

三、解的问题

  • 唯一解: [ 1 3 7 2 1 4 ] \begin{bmatrix}1&3&7\\2&1&4\end{bmatrix} [123174] → \rightarrow [ 1 0 1 0 1 2 ] \begin{bmatrix}1&0&1\\0&1&2\end{bmatrix} [100112]
    • 最简等价的方程个数(增广矩阵行数)=​未知数个数(系数矩阵列数)
    • n ( 未 知 数 个 数 ) = r ( A ) = r ( A , b ) \color{Red}n(未知数个数)=r(A)=r(A,b) n()=r(A)=r(A,b) 时,唯一解
  • 无穷解: [ 1 − 1 2 − 1 1 − 2 ] \begin{bmatrix}1&-1&2\\-1&1&-2\end{bmatrix} [111122] → \rightarrow [ 1 − 1 2 0 0 0 ] \begin{bmatrix}1&-1&2\\0&0&0\end{bmatrix} [101020]
    • 最简等价的方程个数<​未知数个数
    • n > r ( A ) = r ( A , b ) \color{Red}n>r(A)=r(A,b) n>r(A)=r(A,b) 时,无穷解
    • 此时系数矩阵的非零行数,记为 r ( A ) r(A) r(A)
    • [ 1 0 ] ⋅ x 1 + [ − 1 0 ] ⋅ x 2 = [ 2 0 ] \begin{bmatrix}1 \\ 0\end{bmatrix}\cdot x_1 + \begin{bmatrix}-1 \\ 0\end{bmatrix}\cdot x_2 = \begin{bmatrix}2 \\ 0\end{bmatrix} [10]x1+[10]x2=[20]二维空间一维向量无法运算出二维向量,故方程无穷多解
  • 无解: [ 1 − 1 2 1 − 1 3 ] \begin{bmatrix} 1&-1&2 \\ 1&-1&3 \end{bmatrix} [111123] → \rightarrow [ 1 − 1 2 0 0 1 ] \begin{bmatrix} 1&-1&2 \\ 0&0&1 \end{bmatrix} [101021]
    • 出现矛盾方程 0 ⋅ x 1 + 0 ⋅ x 2 = 1 0\cdot x_1+0\cdot x_2=1 0x1+0x2=1
    • n > r ( A ) ≠ r ( A , b ) \color{Red}n>r(A)\neq r(A,b) n>r(A)=r(A,b) 时,无解
    • [ 1 0 ] ⋅ x 1 + [ − 1 0 ] ⋅ x 2 = [ 2 1 ] \begin{bmatrix}1 \\ 0\end{bmatrix}\cdot x_1 + \begin{bmatrix}-1 \\ 0\end{bmatrix}\cdot x_2 = \begin{bmatrix}2 \\ 1\end{bmatrix} [10]x1+[10]x2=[21] 一维向量无法得出二维向量,故方程无解

增广矩阵的行数代表方程个数,系数矩阵列数代表未知数个数

  • 特殊的,对于齐次线性方程 A m × n ⋅ x → = 0 A_{m\times n} \cdot \overrightarrow{x}=0 Am×nx =0,一定有解
    • P9 推论1.2.1:当 n > r ( A ) \color{Red}n>r(A) n>r(A) 时,有无穷多解(必有非零解);当 n = r ( A ) \color{Red}n=r(A) n=r(A) 时,只有零解。
    • P9 推论1.2.2:若 n > m \color{Red}n>m n>m,必有非零解

通解=特解+基础解系的线性组合

四、阶梯形矩阵&行最简形矩阵(具有行简化阶梯形式)

  • [ 1 2 0 4 0 0 0 1 3 0 0 0 0 0 1 ] \begin{bmatrix} 1&2&0&4&0 \\ 0&0&1&3&0 \\ 0&0&0&0&1 \end{bmatrix} 100200010430001 是行最简形矩阵
  • 从一个矩阵出发,阶梯形矩阵可以不同(主元列是相同的),但行最简形矩阵是唯一的
  • 阶梯形矩阵当中,首项元素(必为1)所在位置为主元位置,主元位置所在的列称为主元列
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值