第十五章 群与半群(代数结构)(更新中)

第十五章 半群与群

群(逆) ⊂ \subset 含幺半群(幺) ⊂ \subset 半群(结) ⊂ \subset 广群(闭)

15.1 半群 Semigroup

< R , + > <R,+> <R,+>
< R , × > <R,\times> <R,×>含幺半群( 0 0 0 无逆元)
< M m , n , + > <M_{m,n},+> <Mm,n,+>
  • 幂 power:设半群 < S , ∗ > <S,*> <S,>,由于 ∗ * 满足结合律,可有幂运算。

    • 定义:对 ∀ x ∈ S \forall x\in S xS x n = x n − 1 ∗ x = x ∗ x ∗ . . . ∗ x ⏞ x^n=x^{n-1}*x=\overbrace{x*x*...*x} xn=xn1x=xx...x 。若 < S , ∗ > <S,*> <S,> 有单位元 e e e,有 x 0 = e x^0=e x0=e

    • 性质:若 < S , ∗ > <S,*> <S,> 为半群, m , n m,n m,n N + N^+ N+ ;若为含幺半群, m , n m,n m,n N N N

      1. a m ∗ a n = a m + n a^m*a^n=a^{m+n} aman=am+n
      2. ( a m ) n = a m n (a^m)^n=a^{mn} (am)n=amn

      例 \color{White}\colorbox{Fuchsia}{例} :加法运算时 m a + n a = ( m + n ) a , n ( m a ) = ( m n ) a ma+na=(m+n)a,n(ma)=(mn)a ma+na=(m+n)a,n(ma)=(mn)a

    • 定理有限半群 < S , ∗ > <S,*> <S,> 必有幂等元。即存在 a ∈ S , a 2 = a a\in S,a^2=a aS,a2=a.

      证明:
      若 S 有 幺 元 e , 则 e 为 幂 等 元 ∵ 有 限 半 群 ∴ ∃ b n = b m = b m − n ∗ b n ∴ 对 ∀ t > n , 有 b t = b m − n ∗ b t = . . . = b k ( m − n ) ∗ b t . 令 t = k ( m − n ) , 则 有 b t = b t ∗ b t , 即 b t 是 幂 等 元 若S有幺元e,则e为幂等元\\ \because 有限半群\therefore \exist {\color{red}b^n=b^m}=b^{m-n}*b^n\\ \therefore对\forall t>n,有 b^t=b^{m-n}*b^t=...=b^{k(m-n)}*b^t.\\ 令t=k(m-n),则有b^t=b^t*b^t,即b^t是幂等元 Se,ebn=bm=bmnbnt>n,bt=bmnbt=...=bk(mn)bt.t=k(mn),bt=btbt,bt

  • 子半群

    • 子半群:若 < S , ∗ > <S,*> <S,> 为半群, T T T S S S 的非空子集,且 T T T “ ∗ ” “*” 也是封闭的。则 < T , ∗ > <T,*> <T,> 是半群 < S , ∗ > <S,*> <S,>子半群

    • 子含幺半群:若 < S , ∗ > <S,*> <S,> 为含幺半群, T ∈ S , e ∈ T T\in S,e\in T TS,eT ,且 T T T “ ∗ ” “*” 也是封闭的。则 < T , ∗ > <T,*> <T,> 是含幺半群 < S , ∗ > <S,*> <S,>子含幺半群

      例 \color{White}\colorbox{Fuchsia}{例} < Z , × > , < R + , × > <Z,\times>,<R^+,\times> <Z,×>,<R+,×> 等都是 < R , × > <R,\times> <R,×> 的子半群

15.2 群与子群 Group & Subgroup

  • 群 Group

    • 两种定义

      1. 逆元:每个元都有 逆元 的含幺半群

      2. 方程有解:若半群 < G , ⋅ > <G,\cdot> <G,> 中对 ∀ a , b ∈ G \color{red}\forall a,b\in G a,bG 都存在 x , y ∈ G x,y\in G x,yG 使 x ⋅ a = a ⋅ y = b \color{red}x\cdot a=a\cdot y=b xa=ay=b,则 < G , ⋅ > <G,\cdot> <G,> 是群。

        证明

        1. 证幺元:当 a = b a=b a=b 时, x x x 为左幺元, y y y 为右幺元。故 G G G 有幺元 e = x = y e=x=y e=x=y

        2. 证逆元:当 b = e b=e b=e 时, x x x 为左逆元, y y y 为右逆元。故 a ∈ G a\in G aG 有逆元 a − 1 = x = y a^{-1}=x=y a1=x=y

          < G , ⋅ > <G,\cdot> <G,> 为群。

        说明

        1. 群定义中逆元和幺元的条件可用方程有解代替
        2. 幺(逆)元条件可用存在左幺(逆)元和右幺(逆)元代替
    • 实例 \color{White}\colorbox{Fuchsia}{实例}

      1. 加群:整数加群 < Z , + > <Z,+> <Z,+>,实数加群 < R , + > <R,+> <R,+>,有理数加群 < Q , + > <Q,+> <Q,+>

      2. 乘群

        1. 整数乘 < Z , × > <Z,\times> <Z,×>含幺半群
        2. 实数乘 < R − { 0 } , × > <R{\color{red}-\{0\}},\times> <R{0},×> 是群
      3. 剩余类

        1. 剩余类加群 < Z k , ⊕ > , Z k = { 0 , 1 , . . , k − 1 } <Z_k,\oplus>,Z_k=\{0,1,..,k-1\} <Zk,>,Zk={0,1,..,k1} 是群

        2. 剩余类乘

          1. < Z k , ⊗ > , Z k = { 0 , 1 , . . , k − 1 } <Z_k,\otimes>,Z_k=\{0,1,..,k-1\} <Zk,>,Zk={0,1,..,k1}含幺半群

          2. < Z k − { [ 0 ] } , ⊗ > , Z k = { 0 , 1 , . . , k − 1 } <Z_k{\color{red}-\{[0]\}},\otimes>,Z_k=\{0,1,..,k-1\} <Zk{[0]},>,Zk={0,1,..,k1}:若 k k k素数,则是群;若 k k k 是合数,则只是含幺半群。

            证明:运算封闭,且由于 i i i k k k 互素,故存在整数 x , y x,y x,y 使得 i x + k y = 1 ix+ky=1 ix+ky=1,可得 x ≡ i − 1 ( m o d k ) x\equiv i^{-1}\pmod{k} xi1(modk)

      4. n n n 次对称群 < S n , ∘ > <S_n,\circ> <Sn,> ∣ A ∣ = n |A|=n A=n 的集合 A A A 的全体置换构成集合 S n S_n Sn ∘ \circ 为置换运算

        置换:一个集合对其自身的双射

        证明:由于复合函数的性质,运算是封闭且可结合的。存在幺置换和每个置换的逆置换,因此 < S n , ∘ > <S_n,\circ> <Sn,> 为群

    • 性质

      1. 消去律:若 a ⋅ b = a ⋅ c a\cdot b=a\cdot c ab=ac,则 b = c b=c b=c

        证明:因为有逆元

      2. 由已知群构造新群:设群 < G , ∘ > , a ∈ G <G,\circ>,a\in G <G,>,aG,对于 ∀ x ∈ G \forall x\in G xG G → G G\rightarrow G GG 上的映射 φ a ( x ) = a ⋅ x \varphi_a(x)=a\cdot x φa(x)=ax。令 H = { φ a ∣ a ∈ G } H=\{\varphi_a|a\in G\} H={φaaG},则对于函数复合运算 “ ∘ ” “\circ” ,有 < H , ∘ > <H,\circ> <H,> 为群。

  • 子群 Subgroup:设 < G , ⋅ > <G,\cdot> <G,> 是群, S S S G G G 的非空子群

    • 定义:若 < S , ⋅ > <S,\cdot> <S,> 也是群,则称 S S S G G G 的子群

    • 实例 \color{White}\colorbox{Fuchsia}{实例}

      1. 每个群都有两个子群:群自身和幺元子群(平凡子群) < { e } , ⋅ > <\{e\},\cdot> <{e},>

      2. 生成子群:设群 < G , ∘ > , a ∈ G <G,\circ>,a\in G <G,>,aG,记 S = { a n ∣ n ∈ Z } \color{red}S=\{a^n|n\in Z\} S={annZ},则 < S , ∘ > <S,\circ> <S,> < G , ∘ > <G,\circ> <G,> 的子群,记为 ( a ) (a) (a)

        证明:首先, < S , ⋅ > <S,\cdot> <S,> 运算封闭且是可结合的。其次, S S S 有幺元 e = a 0 e=a^0 e=a0,有逆元 a n ⋅ a − n = e a^n\cdot a^{-n}=e anan=e.

    • 性质

      1. 同幺元:子群的幺元与群的幺元相同

      2. 判别子群:设 < G , ⋅ > <G,\cdot> <G,> 是群, S S S G G G 的非空子集,则 < S , ⋅ > <S,\cdot> <S,> < G , ⋅ > <G,\cdot> <G,> 的子群    ⟺    ∀ a , b ∈ S , a ⋅ b − 1 ∈ S \iff\forall a,b\in S,\color{red}a\cdot b^{-1}\in S a,bS,ab1S
        证:

        1. 幺:当 a = b a=b a=b 时, a ⋅ b − 1 = e ∈ S a\cdot b^{-1}=e\in S ab1=eS. 故有幺元
        2. 逆:当 a = e a=e a=e 时, a ⋅ b − 1 = b − 1 ∈ S a\cdot b^{-1}=b^{-1}\in S ab1=b1S. 故每个元素有逆元
        3. 结:结合律继承于群 < G , ⋅ > <G,\cdot> <G,>
        4. 闭: a ⋅ b = a ⋅ ( b − 1 ) − 1 ∈ S a\cdot b=a\cdot (b^{-1})^{-1}\in S ab=a(b1)1S. 故 a ⋅ b ∈ S a\cdot b\in S abS

        例题 \color{White}\colorbox{Fuchsia}{例题} :设 < G , ⋅ > <G,\cdot> <G,> 是群,定义 H = { h ∣ h ∈ G ⋀ ( ∀ x ) [ x ∈ G → x ⋅ h = h ⋅ x ] } H=\{h|h\in G\bigwedge(\forall x)[x\in G\rightarrow x\cdot h=h\cdot x] \} H={hhG(x)[xGxh=hx]},即 H H H G G G 中可和每个元交换的运算的元素构成的集合。证明 < H , ⋅ > <H,\cdot> <H,> G G G 的一个子群。

        解:
        首 先 幺 元    e ∈ H , 所 以    H ≠ ∅ 设 ∀ a , b ∈ H , 对 ∀ x ∈ G , 若    b ⋅ x = x ⋅ b ,    则 有    x ⋅ b − 1 = b − 1 ⋅ x 从 而 ( a ⋅ b − 1 ) ⋅ x = a ⋅ x ⋅ b − 1 = x ⋅ ( a ⋅ b − 1 ) , 即    a ⋅ b − 1 ∈ H 故 H 是 G 的 一 个 子 群 首先 幺元\;e\in H,所以\;H\ne \empty\\ 设\forall a,b\in H,对\forall x\in G,若\;b\cdot x=x\cdot b,\;则有\;x\cdot b^{-1}=b^{-1}\cdot x\\ 从而(a\cdot b^{-1})\cdot x=a\cdot x\cdot b^{-1}=x\cdot (a\cdot b^{-1}),即\; a\cdot b^{-1}\in H\\ 故 H是 G的一个子群 eHH=a,bH,xG,bx=xb,xb1=b1x(ab1)x=axb1=x(ab1),ab1HHG

      3. 有限群判别子群:子集 S S S 是有限群 G G G 的子群    ⟺    \iff S S S 是封闭的( ∀ a , b ∈ S \forall a,b\in S a,bS,有 a ⋅ b ∈ S a\cdot b\in S abS

15.3 交换群和循环群

  • 交换群 Abelian Group
    • 定义 < G , ⋅ > <G,\cdot> <G,> 的运算满足交换律
    • 性质:群 < G , ⋅ > <G,\cdot> <G,> 是交换群    ⟺    ∀ a , b ∈ G , ( a ⋅ b ) 2 = a 2 ⋅ b 2 \iff \forall a,b\in G,\color{red}(a\cdot b)^2=a^2\cdot b^2 a,bG,(ab)2=a2b2
  • 循环群
    • 定义:存在元 a a a 属于群 < G , ⋅ > <G,\cdot> <G,>,使得 G G G 能由 a a a 生成,即 G = ( a ) G=(a) G=(a),则称 G G G循环群,称 a a a G G G生成元
    • 实例 \color{White}\colorbox{Fuchsia}{实例}
      1. 存在 i ≠ j i\ne j i=j 使得 a i = a j a^i=a^j ai=aj:剩余类加群 < Z k , ⊕ > <Z_k,\oplus> <Zk,> 的生成元 [ a ] [a] [a] 满足 gcd ⁡ ( a , k ) = 1 \gcd(a,k)=1 gcd(a,k)=1
      2. 任何 i ≠ j i\ne j i=j,都有 a i ≠ a j a^i\ne a^j ai=aj:整数加群 < Z , + > <Z,+> <Z,+> 的生成元有 1 , − 1 1,-1 1,1
    • 元素周期:设 < G , ⋅ > <G,\cdot> <G,> 是群, a ∈ G a\in G aG,称使得 a n = e a^n=e an=e 的最小正整数 n n n 为元素 a a a 的周期。若不存在则 a a a 的周期为 ∞ \infty
      • 性质 a m = e    ⟺    n ∣ m a^m=e\iff n|m am=enm a i = a j    ⟺    n ∣ ( i − j ) a^i=a^j\iff n|(i-j) ai=ajn(ij) ( a ) = { e , a , a 2 , . . . , a n − 1 } (a)=\{e,a,a^2,...,a^{n-1}\} (a)={e,a,a2,...,an1}
    • :群中元素数目

15.4 陪集与拉格朗日定理

15.5 正规子群与商群

15.6 同态与同构

性质 a m = e    ⟺    n ∣ m a^m=e\iff n|m am=enm a i = a j    ⟺    n ∣ ( i − j ) a^i=a^j\iff n|(i-j) ai=ajn(ij) ( a ) = { e , a , a 2 , . . . , a n − 1 } (a)=\{e,a,a^2,...,a^{n-1}\} (a)={e,a,a2,...,an1}
- :群中元素数目

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值