第十六章 环和域(代数结构)

第十六章 环和域

半群,含幺半群,群,子群:一个二元运算

环,域:两个二元运算

16.1 环 Ring

  • 定义:含两个二元运算的代数系统 < R , + , ∗ > <R,+,*> <R,+,> 满足

    1. < R , + > <R,+> <R,+>交换群
    2. < R , ∗ > <R,*> <R,>半群
    3. 第二种运算 ∗ * 在第一种运算 + + +可分配,即 a , b , c ∈ R a,b,c\in R a,b,cR,有 a ∗ ( b + c ) = ( a ∗ b ) + ( a ∗ c ) , ( b + c ) ∗ a = ( b ∗ a ) + ( c ∗ a ) a*(b+c)=(a*b)+(a*c),(b+c)*a=(b*a)+(c*a) a(b+c)=(ab)+(ac),(b+c)a=(ba)+(ca)

    则称 < R , + , ∗ > <R,+,*> <R,+,> 是一个

    • 常见环

      1. 加法和乘法运算下,

        < Z , + , × > <Z,+,\times> <Z,+,×>整数环 Zahlen
        < R , + , × > <R,+,\times> <R,+,×>实数环 Real
        < Q , + , × > <Q,+,\times> <Q,+,×>有理数环 Quotient
        < E , + , × > <E,+,\times> <E,+,×>偶数环 Even
        < C , + , × > <C,+,\times> <C,+,×>复数环 Complex
      2. < Z k , ⊗ > <Z_k,\otimes> <Zk,> 为剩余类加群, < Z k , ⊕ > <Z_k,\oplus> <Zk,> 为剩余类乘半群时,

        < Z k , ⊕ , ⊗ > <Z_k,\oplus,\otimes> <Zk,,>(模 k k k)剩余类环
        < Z 2 , ⊕ , ⊗ > <Z_2,\oplus,\otimes> <Z2,,>布尔环
  • 性质

    • 移项法则:设环 < R , + , ∗ > <R,+,*> <R,+,> θ \theta θ 是加法幺元,对 ∀ a , b , c ∈ R \forall a,b,c\in R a,b,cR a + b = c    ⟺    a + b − c = θ a+b=c\iff a+b-c=\theta a+b=ca+bc=θ,其中 − c -c c 代表 + c +c +c 的逆元。

    • 加法幺元是乘法零元 a ∗ θ = θ ∗ a = θ \color{red}a*\theta=\theta*a=\theta aθ=θa=θ

      证明: ∵ a ∗ θ = a ∗ ( θ + θ ) = ( a ∗ θ ) + ( a ∗ θ ) ∴ θ = a ∗ θ \because a*\theta=a*(\theta+\theta)=(a*\theta)+(a*\theta)\therefore \theta=a*\theta aθ=a(θ+θ)=(aθ)+(aθ)θ=aθ

  • 零因子:环 < R , + , ∗ > <R,+,*> <R,+,> 中,若 a ≠ θ , b ≠ θ , a ∗ b = θ \color{red}a\ne \theta,b\ne \theta,a*b=\theta a=θ,b=θ,ab=θ,则称 a , b a,b a,b R R R 的零因子

    实例 \color{White}\colorbox{Fuchsia}{实例}

    1. m m m 剩余类环 < Z m , ⊕ , ⊗ > <Z_m,\oplus,\otimes> <Zm,,> 有零因子    ⟺    m \iff m m 为合数
    2. n n n 阶矩阵环 < Z n , + , ⋅ > <Z_n,+,\cdot> <Zn,+,> 存在零因子,例 [ 1 1 − 1 − 1 ] ⋅ [ 1 1 − 1 − 1 ] = [ 0 0 0 0 ] \begin{bmatrix}1&1\\-1&-1\end{bmatrix}\cdot \begin{bmatrix}1&1\\-1&-1\end{bmatrix}=\begin{bmatrix}0&0\\0&0\end{bmatrix} [1111][1111]=[0000]

16.2 整环与域

  • 特殊环:设 < R , + , ∗ > <R,+,*> <R,+,> 是环

    • 交换环 ∗ * 可交换

    • 含幺环 < R , ∗ > <R,*> <R,> 有幺元

    • 整环:是交换环和含幺环但没有零因子

      实例 \color{White}\colorbox{Fuchsia}{实例} :整环有:整数环 < Z , + , ∗ > <Z,+,*> <Z,+,>,质数剩余类环 < Z p , ⊕ , ⊗ > <Z_p,\oplus,\otimes> <Zp,,> n n n 阶满秩阵环 < M n , ⊕ , ⊗ > <M_n,\oplus,\otimes> <Mn,,>

  • 可约律(无零因子与消去律等价):设 < R , + , ∗ > <R,+,*> <R,+,> 是环, R R R 无零因子    ⟺    ∀ a ≠ 0 , x , y ∈ R \iff\forall a\ne 0,x,y\in R a=0,x,yR,有 a ∗ x = a ∗ y ⟹ x = y a*x=a*y\Longrightarrow x=y ax=ayx=y

    证明

    1. 必要性:若 R R R 无零因子,则当 a ∗ x = a ∗ y a*x=a*y ax=ay 时, a ∗ ( x − y ) = θ a*(x-y)=\theta a(xy)=θ。由于 a ≠ θ a\ne\theta a=θ,因而 x − y = θ x-y=\theta xy=θ,即 x = y x=y x=y
    2. 充分性:设 a ∗ x = a ∗ y ⟹ x = y a*x=a*y\Longrightarrow x=y ax=ayx=y,则若存在 b , c ∈ R b,c\in R b,cR,使得 b ∗ c = θ b*c=\theta bc=θ,则 b ∗ c = θ = b ∗ θ b*c=\theta=b*\theta bc=θ=bθ,即得 c = θ c=\theta c=θ.说明 R R R 无零因子。
  • 子环:设 < R , + , ∗ > <R,+,*> <R,+,> 是环, S S S R R R 的非空子集,若 < S , + , ∗ > <S,+,*> <S,+,> 也是环,则称 S S S R R R 的子环。

  • 环的同态与同构:设两个环 < S , + , ∗ > <S,+,*> <S,+,> < T , ⊕ , ⊗ > <T,\oplus,\otimes> <T,,> f : S → T f:S\rightarrow T f:ST 是映射。若对 ∀ a , b , ∈ S \forall a,b,\in S a,b,S,有 f ( a + b ) = f ( a ) ⊕ f ( b ) , f ( a ∗ b ) = f ( a ) ⊗ f ( b ) \color{red}f(a+b)=f(a)\oplus f(b),f(a*b)=f(a)\otimes f(b) f(a+b)=f(a)f(b),f(ab)=f(a)f(b), 则 f f f 是环 < S , + , ∗ > <S,+,*> <S,+,> 到环 < T , ⊕ , ⊗ > <T,\oplus,\otimes> <T,,>环同态映射

    1. f f f 为满同态 f f f 为满射
    2. f f f 为环同构映射 f f f 为双射
  • :设 < R , + , ∗ > <R,+,*> <R,+,> 是环,若 < R , + > <R,+> <R,+> < R − { θ } , ∗ > <R-\{\theta\},*> <R{θ},> 都是交换群,则称 < R , + , ∗ > <R,+,*> <R,+,> 是域。

    域:除加法幺元(乘法零元) θ \theta θ 外每个元都有乘法逆元的整环

    • 性质:有限整环必是域
  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值