代数结构

本文介绍了代数结构的基础概念,包括群、阿贝尔群、半群和独异点,接着阐述了域的概念,强调了整环、交换环和无零因子环的特点。此外,还探讨了环中的理想与主理想,以及向量空间和模的定义。最后提到了代数,它是配备了双线性映射的向量空间或模。
摘要由CSDN通过智能技术生成

群是最基本的代数结构,其来源于Galois对方程根的对称性的研究。实际上,代数一词就含有解方程的意思。

群是一个配备有二元运算 ⋅  ⁣ : G × G → G \cdot \colon G \times G \to G :G×GG的集合 G G G,满足封闭性结合性含单位元以及每个元素有逆元

1. 封闭性通常是暗含在二元运算定义中的。
2. 结合性通常是默认成立的。

阿贝尔群

若在群的基础上,二元运算还满足交换律,则称该群为交换群或阿贝尔群(abelian group)。

半群

如果将群的限制放宽一些,不要求其一定含单位元和逆,就得到半群(semi-group)。

独异点

含有单位元的半群称为幺半群或独异点(monoid)。

集合 F F F上配备两种运算,不妨称为"加法"和"乘法"。若该集合满足以下条件:

  • 对加法构成阿贝尔群
  • F − { 0 } F - \{0\} F{ 0}对乘法也构成阿贝尔群
  • 乘法对加法有分配律

则称该集合连同其上配备的两种运算为域。

不难看出,域是对四则运算的一种刻画。有理数域实数域复数域则是域最为常见的例子。然而整数并不能构成域,究其原因,是因为整数除法存在除不尽的情况,换言之,在整数的情况下,乘法未必有逆元。

无乘法逆元的域称为整环(Integral Domain)。更广义地说,如果集合 F F F上配备两种运算,不妨称为"加法"和"乘法"。若该集合满足以下条件:

  • 对加法构成阿贝尔群
  • 对乘法构成半群
  • 乘法对加法有分配律

则称该集合连同其上配备的两种运算为环。
含乘法幺元的环称为幺环
乘法可交换的环称为交换环
满足消去律的环称为无零因子环,这等价于 F − { 0 } F - \{0\} F{ 0}对乘法封闭,或者(进一步地)形成半群。

整环是无零因子交换幺环。
含乘法逆元的无零因子幺环( F − { 0 } F - \{0\} <

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值