搞科研(功能结构矩阵)

数据:
func维度为 [358,358] , 元素范围为0-1.
struc维度为 [358,358] , 元素范围为0-x. (x为正整数)

在matlab中,imshow函数显示0-1之间的灰度图,对于元素大于1的值,都显示为最亮的。

数据处理
1.struc数据元素代表ROIs之间的纤维束数量,需要计算其average FA 值。需要 表面,坐标。。。等数据
2、使用python生成灰度图
这里写图片描述
使用 scipy.io库的 loadmat函数读取mat 数据,返回的是dictionary with variable names as keys, and loaded matrices as values.
matlab_compatible 将数据转换成matlab可以读取的形式
[‘b’],取出变量名为 ‘b’的数组
将数组乘以255,元素范围变为0-255.
之后使用fromarray函数将数组变成图片,单通道358*358的灰度图,保存图像

网络代码结构:
DISCOGAN网络

main():
    a_data_loader = get_loader(data_path,...) //相当于是一个batch的数据
    trainer = Trainer(config,a_data_loader,...)
    if config.is_train:
        trainer.train()
    else:
        trainer.test()
trainer():
    class Trainer():
        build_model():
        load_model():
        train():
            A_loader = iter(self.a_data_loader) //一个批次的数据
            valid_x_A = self._get_variable(A_loader.next()) //获得A_loader里面的变量值
            vutils.save_image(valid_x_A,...) //保存一批次的图片
            for step in range():
                //开始训练
        generate_with_A(inputs):
            x_AB = self.G_BA(inputs)
            x_ABA = self.G_AB(x_BA)
            vutile.save_image(...)
        generate_with_B(inputs):
            x_BA = self.G_BA(inputs)
            x_BAB = self.G_AB(X_BA)
            vutile.sa...
        test():
            A_loader = iter(self.a_data_loader)
            x_A = self._get_variable(A_loader.next())
            vutils.save...
            self.generate_with_A(x_A)
            self.generate_with_B(x_B)
            ...
        def _get_variable(inputs):
            out = Variable(inputs) //将输入的tensor变成variable,variable包含变量的值和梯度


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值