Attention 总结(全)

1.self attention

[深度应用]·Keras实现Self-Attention文本分类(机器如何读懂人心)

 Self attention 在NLP中有很多的应用,对于它的作用,个人觉得是通过attention score,能够区分出文本的不同部分对最终的任务有不同的重要性,比如,对于文本的分类任务,不同的字/词对于任务是有不同的重要程度,Self Attention从《Attention Is All You Need》提出。

具体过程可以参考《The Illustrated Transformer




 

对于计算出来的Z交给后面的任务前,有两种办法对tensor进行‘拉平’

  • 1. K.sum 

K.sum(weighted_input, axis=1)

  • 2. Pooling layer

input_seq = Self_Attention(128)(embeddin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值