1.self attention
![[深度应用]·Keras实现Self-Attention文本分类(机器如何读懂人心)](https://i-blog.csdnimg.cn/blog_migrate/93a4a6c4dc2b9ea2b9ade6c0351c2db9.png)
Self attention 在NLP中有很多的应用,对于它的作用,个人觉得是通过attention score,能够区分出文本的不同部分对最终的任务有不同的重要性,比如,对于文本的分类任务,不同的字/词对于任务是有不同的重要程度,Self Attention从《Attention Is All You Need》提出。



具体过程可以参考《The Illustrated Transformer》



对于计算出来的Z交给后面的任务前,有两种办法对tensor进行‘拉平’
- 1. K.sum
K.sum(weighted_input, axis=1)
- 2. Pooling layer
input_seq = Self_Attention(128)(embeddin

最低0.47元/天 解锁文章
485

被折叠的 条评论
为什么被折叠?



