AI大模型能够处理广泛主题的文本生成,但模型知识只能基于它们训练时使用的公开数据。如果你想构建能够利用私有数据或实时数据进行推理的AI应用,你需要用特定的信息来增强模型的知识。将相关信息检索并插入到模型的输入中,即检索增强生成(Retrieval Augmented Generation,RAG)。
在本文中,我们将介绍如何使用LangChain开发一个简单的RAG问答应用。我们将依次介绍典型的问答架构,讨论相关的LangChain组件,并展示如何跟踪和理解我们的应用。
RAG的基本概念
RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:
- 首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。
- 然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。
- 最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。
LangChain和RAG的结合
LangChain是一个专注于大模型应用开发的平台,它提供了一系列的组件和工具,帮助你轻松地构建RAG应用。LangChain提供了以下的组件来帮助你构建RAG应用:
- 数据加载器(DocumentLoader):数据加载器是一个对象,可以从一个数据源加载数据,并将其转换为文档(Document)对象。一个文档对象包含两个属性:page_content(str)和metadata(dict)。page_content是文档的文本内容,metadata是文档的元数据,例如标题、作者、日期等。
- 文本分割器(DocumentSplitter):文本分割器是一个对象,可以将一个文档对象分割成多个较小的文档对象。这样做的目的是为了方便后续的检索和生成,因为大模型的输入窗口是有限的,而且在较短的文本中更容易找到相关的信息。
- 文本嵌入器(Embeddings):文本嵌入器是一个对象,可以将文本转换为嵌入(Embedding),即一个高维的向量。文本嵌入可以用来衡量文本之间的相似度,从而实现检索的功能。
- 向量存储器(VectorStore):向量存储器是一个对象,可以存储和查询嵌入。向量存储器通常使用一些索引技术,例如Faiss或Annoy,来加速嵌入的检索。
- 检索器(Retriever):检索器是一个对象,可以根据一个文本查询返回相关的文档对象。检索器的一种常见实现是向量存储器检索器(VectorStoreRetriever),它使用向量存储器的相似度搜索功能来实现检索。
- 聊天模型(ChatModel):聊天模型是一个对象,可以根据一个输入序列生成一个输出消息。聊天模型通常基于大模型,例如GPT-3,来实现文本生成的功能。
使用LangChain构建RAG应用的一般流程如下:
- 首先,我们需要加载我们的数据。我们可以使用数据加载器来实现这一步,根据数据源的类型选择合适的数据加载器。例如,如果我们的数据源是一个网页,我们可以使用WebBaseLoader,它可以使用urllib和BeautifulSoup来加载和解析网页,返回一个文档对象。
- 然后,我们需要将我们的文档对象分割成较小的文档对象。我们可以使用文本分割器来实现这一步,根据文本的特点选择合适的文本分割器。例如,如果我们的文本是一个博客文章,我们可以使用RecursiveCharacterTextSplitter,它可以递归地使用常见的分隔符(如换行符)来分割文本,直到每个文档对象的大小符合要求。
- 接下来,我们需要将我们的文档对象转换为嵌入,并存储到向量存储器中。我们可以使用文本嵌入器和向量存储器来实现这一步,根据嵌入的质量和速度选择合适的文本嵌入器和向量存储器。例如,如果我们想要使用OpenAI的嵌入模型和Chroma的向量存储器,我们可以使用OpenAIEmbeddings和ChromaVectorStore。
- 然后,我们需要创建一个检索器,用于根据用户的输入检索相关的文档对象。我们可以使用向量存储器检索器来实现这一步,- 传递一个向量存储器对象和一个文本嵌入器对象作为参数,创建一个向量存储器检索器对象。
- 最后,我们需要创建一个聊天模型,用于根据用户的输入和检索到的文档对象生成一个输出消息。我们可以使用LangChain提供的聊天模型来实现这一步,根据模型的性能和成本选择合适的聊天模型。例如,如果我们想要使用OpenAI的GPT-3模型,我们可以使用OpenAIChatModel。
下面是一个使用LangChain构建RAG应用的示例代码:
python复制代码# 导入LangChain的库
from langchain import *
# 加载数据源
loader = WebBaseLoader()
doc = loader.load("https://xxx.html")
# 分割文档对象
splitter = RecursiveCharacterTextSplitter(max_length=512)
docs = splitter.split(doc)
# 转换文档对象为嵌入,并存储到向量存储器中
embedder = OpenAIEmbeddings()
vector_store = ChromaVectorStore()
for doc in docs:
embedding = embedder.embed(doc.page_content)
vector_store.add(embedding, doc)
# 创建检索器
retriever = VectorStoreRetriever(vector_store, embedder)
# 创建聊天模型
prompt = hub.pull("rlm/rag-prompt")
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
# 创建一个问答应用
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# 启动应用
rag_chain.invoke("What is main purpose of xxx.html?")
LangChain和RAG的优势和应用场景
LangChain和RAG的结合可以带来以下的优势:
- 灵活性:你可以根据你的需求和数据源选择不同的组件和参数,定制你的RAG应用。你也可以使用自定义的组件,只要它们遵循LangChain的接口规范。
- 可扩展性:你可以使用LangChain的云服务来部署和运行你的RAG应用,无需担心资源和性能的限制。你也可以使用LangChain的分布式计算功能来加速你的RAG应用,利用多个节点的并行处理能力。
- 可视化:你可以使用LangSmith来可视化你的RAG应用的工作流程,查看每个步骤的输入和输出,以及每个组件的性能和状态。你也可以使用LangSmith来调试和优化你的RAG应用,发现和解决潜在的问题和瓶颈。
LangChain和RAG的结合可以应用于多种场景,例如:
- 专业问答(Professional Question Answering):你可以使用LangChain和RAG来构建一个专业领域的问答应用,例如医疗、法律或金融。你可以从专业领域的数据源中检索相关的信息,帮助大模型回答用户的问题。例如,你可以从医学文献中检索疾病的诊断和治疗方案,帮助大模型回答医疗相关的问题。
- 文本摘要(Text Summarization):你可以使用LangChain和RAG来构建一个文本摘要应用,例如新闻摘要或论文摘要。你可以从多个数据源中检索相关的文本,帮助大模型生成一个综合的摘要。例如,你可以从多个新闻网站中检索关于同一事件的报道,帮助大模型生成一个全面的摘要。
- 文本生成(Text Generation):你可以使用LangChain和RAG来构建一个文本生成应用,例如诗歌生成或故事生成。你可以从不同的数据源中检索灵感,帮助大模型生成更有趣和更有创意的文本。例如,你可以从诗歌、歌词或小说中检索相关的文本,帮助大模型生成一首诗、一首歌或一个故事。
结论
在本文中,我们介绍了如何使用LangChain开发一个简单的问答应用。我们介绍了RAG的基本概念和优势,讨论了相关的LangChain组件。我们还介绍了LangChain和RAG的结合的优势和应用场景。
我们希望本文能够帮助你了解LangChain和RAG的结合的潜力和价值,鼓励你尝试使用LangChain和RAG开发自己的应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。