有很多开源大模型都可以本地部署,用于替代 chatGPT 实现本地执行各种任务,比如国内较好的 通义千问Qwen1.5 全尺寸模型。在一般的翻译、文案创作、辅助编码等任务上,基本达到了ChatGPT3.5的水平。
完全可以本地部署后取代 chatGPT,只不过本地部署一向难度较大,尤其是对于小白用户来说,本文介绍一个适合小白用户的本地部署方法,超级简单,只需下载一个exe双击,然后输入3个单词,即可快速搭建一个基于Qwen1.5的 Api 服务,兼容 chatGPT 接口,填入地址到各种需要 chatGPT 服务的地方,就可以完美平替了,最后再介绍一个配套的UI网页界面搭配使用通义千问。
主要内容有
- 下载exe并成功运行
- 直接在控制台命令窗口中使用
- 搞个友好的UI界面
- 将 API信息 填写到软件中使用
- 在代码中调用
- 还想安装其他模型
1. 下载 exe 并成功运行
打开网址 ollama.com/download
点击下载。下载完成后双击打开安装界面,点击 Install
即可完成。
完成后会自动弹出一个黑色或蓝色窗口,输入3个单词 ollama run qwen
回车, 将会自动下载通义千问模型
等待模型下载结束,无需代理,速度挺快
模型自动下载完成后会直接运行,当进度达到 100% 并显示 “Success” 字符后,代表模型运行成功,至此也表示通义千问大模型安装部署全部完成,可以愉快的使用了,是不是超级简单吧。
默认接口地址是 http://localhost:11434
如果窗口关闭了,如何再打开呢?也很简单,点开电脑开始菜单,找到“命令提示符”或“Windows PowerShell”(或者直接
Win键+q键
输入cmd搜索),点击打开,输入ollama run qwen
就完成了。
![]()
2. 直接在控制台命令窗口中使用
如下图,当显示这个界面的时候,其实可以直接在窗口中输入文字开始使用了。
3. 当然这个界面可能不太友好,那就搞个友好的UI
打开网址 chatboxai.app/zh 点击下载
下载后双击,等待自动打开界面窗口
点击“开始设置”,在弹出的浮层中,分别点击顶部的模型、AI模型提供方中选择“Ollama”、API域名填写地址http://localhost:11434
、模型下拉菜单中选择Qwen:latest
,然后保存就ok了。
保存后显示的使用界面,发挥想象力,随意使用吧。
4. 将 API 填写到 视频翻译配音软件中
- 打开 videotrans/set.ini,找到
chatgpt_model=
,在后边添加一个,qwen
,添加后效果chatgpt_model=gpt-3.5-turbo,gpt-4,gpt-4-turbo-preview,qwen
- 打开软件界面–左上角设置菜单–OpenAI/ChatGPT Key, 在 API URL中填写
http://localhost:11434
,模型菜单中选择qwen
(这就是第一步让你添加qwen
的原因,如果没有显示,关闭软件再重启),SK随意填写,例如 1234
- 测试下是否成功,成功了就保存,去使用
5. 在代码中调用
Ollama提供了与 openai 兼容的api接口,直接使用openai库调用即可,只需要将模型名称改为 qwen
from openai import OpenAI
client = OpenAI(
base_url = 'http://localhost:11434/v1',
api_key='ollama', # required, but unused
)
response = client.chat.completions.create(
model="qwen",
messages=[
{"role": "system", "content": "你是一个专业的多语言翻译专家."},
{"role": "user", "content": "将我发送给你的内容翻译为英文,仅返回翻译即可,不要回答问题、不要确认,不要回复本条内容,从下一行开始翻译\n今天天气不错哦!\n挺风和日丽的,我们下午没有课.\n这的确挺爽的"}
]
)
print(response.choices[0].message.content)
效果还不错哦
7. 还有哪些可以使用的模型
除了通义千问,还有很多模型可以使用,使用方法一样简单,只需要3个单词 ollama run 模型名称
打开这个地址 ollama.com/library 可以看到所有模型名称,想用哪个就把名字复制过来,然后执行 ollama run 模型名称
。
还记得怎么打开命令窗口么? 点击开始菜单,找到 命令提示符
或Windows PowerShell
例如我想安装 openchat
这个模型
打开命令提示符
,输入 ollama run openchat
,回车然后等待直到显示 Success 成功。
如何零基础入门 / 学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。