计算机视觉——相机标定

本文详细介绍了张正友相机标定法,包括相机内参数、张氏标定法的原理与步骤,以及如何通过棋盘格拍摄图片进行标定。通过这种方法可以求得相机的内参数矩阵、畸变系数、旋转矩阵和平移向量,实现对相机的全面校准。
摘要由CSDN通过智能技术生成

1. 张正友相机标定法

1.1 相机内的参数

设P=(X,Y,Z)P=(X,Y,Z)为场景中的一点,在针孔相机模型中,其要经过以下几个变换,最终变为二维图像上的像点p=(μ,ν)p=(μ,ν):

  1. 将PP从世界坐标系通过刚体变换(旋转和平移)变换到相机坐标系,这个变换过程使用的是相机间的相对位姿,也就是相机的外参数。
  2. 从相机坐标系,通过透视投影变换到相机的成像平面上的像点p=(x,y)p=(x,y)。
  3. 将像点pp从成像坐标系,通过缩放和平移变换到像素坐标系上点p=(μ,ν)p=(μ,ν)。

相机将场景中的三维点变换为图像中的二维点,也就是各个坐标系变换的组合,可将上面的变换过程整理为矩阵相乘的形式:
在这里插入图片描述
将矩阵KK称为相机的内参数,
在这里插入图片描述
其中,α,βα,β表示图像上单位距离上像素的个数,则fx=αf,fy=βffx=αf,fy=βf将相机的焦距ff变换为在x,y方向上像素度量表示。

另外,为了不失一般性,可以在相机的内参矩阵上添加一个扭曲参数γγ,该参数用来表示像素坐标系两个坐标轴的扭曲。则内参数KK变为
在这里插入图片描述

1.2 张氏标定法

在张氏标定法中,用于标定的棋盘格是三维场景中的一个平面ΠΠ,其在成像平面的像是另一个平面ππ,知道了两个平面的对应点的坐标,就可以求解得到两个平面的单应矩阵HH。其中,标定的棋盘格是特制的,其角点的坐标是已知的;图像中的角点,可以通过角点提取算法得到,这样就可以得到棋盘平面ΠΠ和图像平面ππ的单应矩阵HH。
通过上面的相机模型有:
在这里插入图片描述
其中pp是像点坐标,PP是标定的棋盘坐标。 这样就可以得到下面的等式:
在这里插入图片描述
HH表示的是成像平面和标定棋盘平面之间的单应矩阵。通过对应的点对解得HH后,则可以通过上面的等式得到相机的内参数KK,以及外参旋转矩阵RR和平移向量tt。

1.3 实现步骤

  1. 打印一张棋盘格A4纸张(黑白间距已知),并贴在一个平板上
  2. 针对棋盘格拍摄若干张图片(一般10-20张)
  3. 在图片中检测特征点(Harris特征)
  4. 利用解析解估算方法计算出5个内部参数,以及6个外部参数
  5. 根据极大似然估计策略,设计优化目标并实现参数的refinement

1.4 原理

了解坐标系:世界坐标系 、相机坐标系 、图像坐标系 、像素坐标系

(1)计算外参:

s: 世界坐标系到图像坐标系的尺度因子

A: 相机内参矩阵
在这里插入图片描述像主点坐标

α, β: 焦距与像素横纵比的融合

γ: 径向畸变参数

有:

2D 图像点: 在这里插入图片描述

3D 空间点: 在这里插入图片描述

其次坐标:在这里插入图片描述

所以描述空间坐标到图像坐标的映射(标定用的棋盘格平面到图像平面的单应性关系):
在这里插入图片描述
不妨设棋盘格位于Z = 0 定义旋转矩阵R的第i列为, 则有:
在这里插入图片描述
于是空间到图像的映射可改为:
在这里插入图片描述
其中H 是描述单应性矩阵,可通过最小二乘法,从角点世界坐标到图像坐标的关系求解
在这里插入图片描述
该单应性矩阵有8个自由度

(2)计算内参

在这里插入图片描述
在这里插入图片描述
根据b的定义,可以推导出如下公式
在这里插入图片描述
可以推导出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值