15. 微积分

1.微积分基本定理A

2.微积分基本定理B


1.微积分基本定理A

1).明白F(x)是什么

a.你有一条曲线, 它的方程是y = f(t)

b.a是一个固定不变的起点(比如 t = 0)

c.x是一个可以左右移动的终点

在这里插入图片描述

该积分的意义: 计算从固定起点t = a, 到可变终点t = x之间, 曲线f(t)之下的面积

在这里插入图片描述

2).F(x)的变化率是多少

想象你正在用一把高度不断变化的刷子, 从左向右粉刷这堵墙

a.F(x)表示你已经刷过的总面积

b.你现在站在x点, 当你再向右移动一个"极其微小的距离dx", 你新刷出来的那一小"条"面积是多少

c.新刷的那一小条, 高度就是你当前所在位置x的刷子高度, 也就是f(x), 宽度就是dx

d.所以新的面积是 ≈ f(x) * dx

在这里插入图片描述


在这里插入图片描述


2.微积分基本定理B

若函数f(x)在区间[a, b]上连续,F(x)f(x)[a, b]上的任意一个原函数(即F′(x) = f(x)),:

在这里插入图片描述

a.左边: ∫ₐᵇ f(x)dx表示函数f(x)从x = a到x = b的定积分

几何上可以理解为曲线y = f(x)[a, b]上与x轴围成的"有向面积"

b.右边: F(b)F(a), 其中F(x)f(x)的任意一个原函数(即满足F'(x) = f(x)的函数)

整个公式的意思是: "要计算定积分, 只需找到被积函数f(x)的一个原函数F(x), 然后计算它在上下限的函数值之差"
为什么是"F(b) − F(a)"

想象一个物体沿直线运动,f(t)是物体在时刻t的瞬时速度

a.那么它的原函数F(t)就是物体从某个起点开始到时刻t的位移

b.物体从时刻a到时刻b的总位移变化, 显然就是F(b)F(a)

c.另一方面, 总位移变化也可以通过把每瞬间的速度累加起来得到, 即 ∫ₐᵇ f(t) dt。

d.∫ₐᵇ f(t) dt = F(b)F(a)

关键: "原函数F(x)记录了累积量, 而定积分是增量, 这个增量就是累积量在区间两端的差值"
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值