18 LlamaIndex中的配置设置

LlamaIndex中的配置设置

在LlamaIndex的工作流程/应用程序中,配置设置(Settings)是一组在索引和查询阶段常用的资源。你可以使用它来设置全局配置。局部配置(如转换、LLMs、嵌入模型)可以直接传递给使用它们的接口。

Settings是一个简单的单例对象,它在整个应用程序中存在。每当某个组件未提供时,Settings对象会用作全局默认值。

以下是可以配置在Settings对象上的属性:

LLM

LLM用于响应提示和查询,并负责编写自然语言响应。

from llama_index.llms.openai import OpenAI
from llama_index.core import Settings

Settings.llm = OpenAI(model="gpt-3.5-turbo", temperature=0.1)

嵌入模型

嵌入模型用于将文本转换为数值表示,用于计算相似性和top-k检索。

from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.core import Settings

Settings.embed_model = OpenAIEmbedding(
    model="text-embedding-3-small", embed_batch_size=100
)

节点解析器 / 文本分割器

节点解析器 / 文本分割器用于将文档解析为更小的块,称为节点。

from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import Settings

Settings.text_splitter = SentenceSplitter(chunk_size=1024)

如果你只想更改块大小或块重叠而不改变默认分割器,这也是可能的:

Settings.chunk_size = 512
Settings.chunk_overlap = 20

转换

转换在摄取文档期间应用。默认情况下,使用node_parser/text_splitter,但可以覆盖并进一步自定义。

from llama_index.core.node_parser import SentenceSplitter
from llama_index.core import Settings

Settings.transformations = [SentenceSplitter(chunk_size=1024)]

分词器

分词器用于计数标记。这应设置为与你使用的LLM相匹配的东西。

from llama_index.core import Settings

# openai
import tiktoken

Settings.tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo").encode

# 开源
from transformers import AutoTokenizer

Settings.tokenzier = AutoTokenizer.from_pretrained(
    "mistralai/Mixtral-8x7B-Instruct-v0.1"
)

回调

你可以设置一个全局回调管理器,用于观察和消费在整个llama-index代码中生成的事件。

from llama_index.core.callbacks import TokenCountingHandler, CallbackManager
from llama_index.core import Settings

token_counter = TokenCountingHandler()
Settings.callback_manager = CallbackManager([token_counter])

提示助手参数

一些特定的参数/值在查询期间使用,以确保输入到LLM的提示有足够的空间生成一定数量的标记。

通常这些是使用LLM的属性自动配置的,但在特殊情况下可以覆盖。

from llama_index.core import Settings

# LLM的最大输入大小
Settings.context_window = 4096

# 保留用于文本生成的标记数量
Settings.num_output = 256

提示

学习如何配置特定模块:

  • LLM
  • 嵌入模型
  • 节点解析器/文本分割器
  • 回调

设置局部配置

使用特定部分设置的接口也可以接受局部覆盖。

index = VectorStoreIndex.from_documents(
    documents, embed_model=embed_model, transformations=transformations
)

query_engine = index.as_query_engine(llm=llm)

通过这些配置选项,你可以灵活地调整LlamaIndex的行为,以满足你的具体需求。无论是全局设置还是局部覆盖,LlamaIndex都提供了强大的工具来优化你的应用程序。

### Llamaindex 环境搭建教程 #### 安装依赖项 为了成功安装和配置 Llamaindex,首先需要确保环境中已安装 Python 3.7 或更高版本以及 pip 工具。可以通过以下命令来更新 pip 到最新版: ```bash pip install --upgrade pip ``` #### 创建虚拟环境(推荐) 创建一个新的虚拟环境有助于隔离项目所需的包和其他全局安装的软件包。 ```bash python -m venv my_llamaindex_env source my_llamaindex_env/bin/activate # Linux or macOS my_llamaindex_env\Scripts\activate.bat # Windows ``` #### 安装 Llamaindex 及其他必要库 激活虚拟环境后,在终端中执行如下指令以安装 Llamaindex 库及其依赖项[^1]。 ```bash pip install llama-index ``` 对于特定应用场景如构建基于 RAG 的问答系统,则还需要额外的数据源适配器和支持向量机等组件。例如,如果计划使用 InternLM 模型作为基础语言模型,那么应该按照官方说明设置好相应的模型路径。 #### 下载预训练模型 根据需求下载合适的预训练模型文件,并将其放置于指定位置。这里假设已经完成了从公共盘挂载操作,具体做法参见给定的例子中的步骤。 ```bash cd ~/model ln -1_8b/ ``` #### 编写初始化脚本 最后一步是在工作目录下新建一个 Python 文件 `llamaindex_internlm.py` 并编写必要的导入语句与实例化对象代码片段,从而实现快速启动目的。 ```python from llama_index import SimpleDirectoryReader, GPTListIndex, readers, LangchainEmbedding, ServiceContext from langchain.embeddings.huggingface import HuggingFaceEmbeddings import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' embedding_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name="Shanghai_AI_Laboratory/internlm2-chat-1_8b")) service_context = ServiceContext.from_defaults(embed_model=embedding_model) documents = SimpleDirectoryReader('data').load_data() index = GPTListIndex(documents, service_context=service_context) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

需要重新演唱

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值