n阶行列式计算Python和C语言实现

行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。
行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
这里介绍一下计算机计算行列式的简单方法,只用于我们一般计算行列式用,不适合科研计算大数据。

这里使用对角线法和递归降价代数余子式求和的方法。

Python递归求行列式代码:

def det(m):
    if len(m) <= 0:
        return None
    elif len(m) == 1:
        return m[0][0]
    else:
        s = 0
        for i in range(len(m)):
            n = [[row[a] for a in range(len(m)) if a != i] for row in m[1:]]  # 这里生成余子式
            s += m[0][i] * det(n) * (-1) ** (i % 2)
        return s
print('答案为: ', det(eval(input('输入行列式(格式为 [[a11,a12],[a21,a22]] 以此类推): \n'))))

这里写图片描述
C语言求行列式代码:

#include"stdio.h"
int main()
{
    int z,r,s,j,i;
    double a[20][20],m=1.0,k;
    printf("请输入阶数:");
        scanf("%d",&r);
        printf("请输入数字\n");
        for(i=0;i<r;i++)
        for(j=0;j<r;j++)
            scanf("%lf",&a[i][j]);
        for(z=0;z<r-1;z++)
        for(i=z;i<r-1;i++)
        {    if(a[z][z]==0)
                for(i=z;a[z][z]==0;i++)
                {
                    {
                        for(j=0;j<r;j++)
                        a[z][j]=a[z][j]+a[i+1][j];
                    }
                    if(a[z][z]!=0)break;
                }
                    {
                        k=-a[i+1][z]/a[z][z];
                        for(j=z;j<r;j++)
                        a[i+1][j]=k*(a[z][j])+a[i+1][j];
                    }
        }
         for(z=0;z<r;z++)
         m=m*(a[z][z]);
         printf("%f",m);
}
计算机科学中,行列式通常用于表示矩阵的线性性质。用结构体(在C语言中叫结构体,在其他语言如C++、Python等也有类似概念)递归来计算行列式可以分为两步: 1. 定义结构体:如果你是在C/C++中,你可以创建一个名为`Matrix`的结构体,包含行数列数以及元素的数组。例如: ```c++ typedef struct { int rows; int cols; double data[ROW][COL]; } Matrix; ``` 2. 递归函数计算:对于二维矩阵的行列式,可以使用高斯消元法的递归版本。对于一个2x2矩阵,公式是`det = a * b - c * d`;对于更大的矩阵,我们可以使用分块法,即将其分解为两个较小的子矩阵,然后相乘并减去。 递归思路通常是这样的: - 如果矩阵只有1行1列,直接返回其元素值; - 否则,将矩阵分为上半部分(包括第一行)下半部分,对它们分别求行列式,然后按照特定规则(交替符号法则)相乘。 递归公式可以写成: ```c++ double determinant(Matrix matrix) { if (matrix.rows == 1 || matrix.cols == 1) return matrix.data[0][0]; // 对于2x2及以上的矩阵... double det_top = determinant(matrix.sub_matrix(0, 0, matrix.rows - 1, matrix.cols - 1)); double det_bot = determinant(matrix.sub_matrix(1, 0, matrix.rows - 1, matrix.cols - 1)); // 根据行列式计算规则(Leibniz公式) return matrix.data[0][0] * det_bot - matrix.data[1][0] * det_top; } ``` 这里`sub_matrix(row_start, col_start, row_end, col_end)`是一个辅助函数,用于提取子矩阵。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值