1.基本概念
机器学习:构建不需要显式编程的机器,为实现任务T,通过训练E,逐步提高表现P的一个过程,强调学习。
深度学习:一种机器学习的技术,一种基于对数据进行表征学习的算法,用非监督式或半监督式的特征学习和分层特征提取的高效算法来代替手工获取特征。
强化学习:一种机器学习的技术,强调如何基于环境而行动,以获取最大化的预期利益,依靠自身的经历进行自我学习。
2.机器学习分类
监督学习:预测数值型数据的回归、预测分类标签的分类、预测顺序的排序等等任务
无监督学习:聚类、异常检测、数据可视化、监督学习方法的预处理工具等等任务
强化学习:自我评估、机器人自动控制、计算机游戏的人工智能、市场战略最优化等等任务