【深度学习基础知识 - 25】提升模型泛化能力的方法

提升模型泛化能力的方法

  • 从数据角度上来说。可以通过数据增强、扩充训练集等方法提高泛化能力。
  • 在训练策略上,可以增加每个batch size的大小,进而让模型每次迭代时见到更多数据,防止过拟合。
  • 调整数据分布,做训练数据集的类别均衡。
  • 调整网络结构。如果数据集较小,可以降低模型复杂度防止过拟合。如果数据集较大,可以尝试更加复杂的模型。
  • 减少过拟合的方法也可以提升模型的泛化能力。点我看过拟合和欠拟合的概念及解决方案

博主会持续更新一些深度学习相关的基础知识以及工作中遇到的问题和感悟,喜欢请关注、点赞、收藏,感谢大家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雁宇up

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值