pytorch数据操作---dataset,dataloader,transform

基本概述

pytorch输入数据PipeLine一般遵循一个“三步走”的策略,一般pytorch 的数据加载到模型的操作顺序是这样的:
① 创建一个 Dataset 对象。必须实现__len__()、getitem()这两个方法,这里面会用到transform对数据集进行扩充。
② 创建一个 DataLoader 对象。它是对DataSet对象进行迭代的,一般不需要事先里面的其他方法了。
③ 循环遍历这个 DataLoader 对象。将img, label加载到模型中进行训练

注意这三个类均在torch.utils.data 中

pytorch数据预处理三剑客之系列文章

(第一篇)pytorch数据预处理三剑客之——Dataset,DataLoader
这一篇章已经很明确的说明了如何使用DataSet类和DataLoader类,
(第二篇)pytorch数据预处理三剑客之——DataLoader的重要参数collate_fn,sampler
第二篇文章中详细介绍了DataLoader类中的几个重要的常用的参数,如sampler参数、collate_fn参数
(第三篇)pytorch数据预处理三剑客之——Transform
在数据与处理的过程中,还会遇到数据增强、数据裁剪等各种操作,当然这些操作我们可以预先自己来实现,但是pytorch提供了强大的处理工具来对图像进行预处理,这也是本文的重点,详细介绍 torchvision中的transform操作。

多种组合变换有一定的先后顺序,处理PILImage的变换方法(大多数方法)都需要放在ToTensor方法之前,
而处理tensor的方法(比如Normalize方法)就要放在ToTensor方法之后。

接下来介绍transforms中的函数:(从比较重要的开始)
ToTensor:convert a PIL image to tensor (HWC) in range [0,255]and then to a torch.Tensor(CHW) in the range [0.0,1.0]

Normalize:Normalized an tensor image with mean and standard deviation。
即:用给定的均值和标准差分别对每个通道的数据进行正则化。
具体来说,给定均值(M1,,Mn),给定标准差(S1,,Sn),其中n是通道数(一般是3

自制transform----
如果自制transform类,则该类的_call函数的输入输出都是PIL格式的图像。
PIL是HWC顺序,并且三个通道为RGB(不是cv2的BGR)。
特别注意,
如果过程中要采用cv2处理图像,只需将PIL转换为np.array形式:np.array(PIL),无需将RGB转换为BGR。- 如果一定要转换颜色通道,也务必在cv2操作完之后,将BGR转回RGB。- 否则,会导致通道顺序与预训练网络见过的通道顺序不一致,性能降低。
实际上,最终tranform返回的,可以显式转换:
img = Image.fromarray(img.astype(‘uint8’)).convert(‘RGB’)
也可以只需是HWC,RGB,取值范围在0-55之间的np.array即可。框架会自动转换。

pytorch数据预处理:如何自定义transforms方法

PyTorch 学习笔记(一):让PyTorch读取你的数据集
主要内容:

重点看 getitem函数,getitem接收一个index,然后返回图片数据和标签,这个index通常指的是一个list的index,
这个list的每个元素就包含了图片数据的路径和标签信息。

然而,如何制作这个list呢,通常的方法是将图片的路径和标签信息存储在一个txt中,然后从该txt中读取。
那么读取自己数据的基本流程就是:
- 制作存储了图片的路径和标签信息的txt
- 将这些信息转化为list,该list每一个元素对应一个样本
- 通过getitem函数,读取数据和标签,并返回数据和标签

pytorch中transform函数详解

  • 5
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch中训练CNN-GRU模型,可以使用nn.Module类来构建模型。下面是一个简单的示例代码,其中包含一个CNN层和一个GRU层: ```python import torch import torch.nn as nn class CNN_GRU_Model(nn.Module): def __init__(self): super(CNN_GRU_Model, self).__init__() # CNN layer self.cnn = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3), nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3), nn.ReLU(), nn.MaxPool2d(kernel_size=2) ) # GRU layer self.gru = nn.GRU(input_size=32*6*6, hidden_size=64, num_layers=1, batch_first=True) # Output layer self.out = nn.Linear(64, 10) def forward(self, x): x = self.cnn(x) x = x.view(x.size(0), -1) x, _ = self.gru(x) x = self.out(x[:, -1, :]) return x ``` 在上述代码中,我们首先定义了一个`CNN_GRU_Model`类,继承自`nn.Module`类。该类包含三个层,分别是CNN层、GRU层和输出层。 在`__init__`函数中,我们定义了CNN层和GRU层。CNN层包含两个卷积层和两个池化层。GRU层包含一个单层的GRU网络,其中输入大小为32\*6\*6,隐藏层大小为64。输出层使用一个线性层,将GRU层的输出映射到10个类别上。 在`forward`函数中,我们首先将输入通过CNN层进行卷积和池化,然后将输出展平成二维张量。接着,我们将展平后的张量输入到GRU层中,得到GRU层的输出。最后,我们将GRU层的最后一个时间步的隐藏状态输入到输出层中,得到最终的分类结果。 接下来,我们可以使用上述模型来训练一个分类任务的数据集。假设我们使用的是CIFAR-10数据集,可以使用以下代码进行训练: ```python import torchvision.datasets as datasets import torchvision.transforms as transforms # Load CIFAR-10 dataset train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor()) test_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transforms.ToTensor()) # Define dataloader train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=64, shuffle=False) # Define model model = CNN_GRU_Model() # Define loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # Train the model num_epochs = 10 for epoch in range(num_epochs): for images, labels in train_loader: # Forward pass outputs = model(images) loss = criterion(outputs, labels) # Backward and optimize optimizer.zero_grad() loss.backward() optimizer.step() # Evaluate the model on test set with torch.no_grad(): total = 0 correct = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() accuracy = correct / total # Print the accuracy for each epoch print('Epoch [{}/{}], Accuracy: {:.2f}%'.format(epoch+1, num_epochs, accuracy*100)) ``` 在上述代码中,我们首先加载CIFAR-10数据集,并定义一个dataloader。然后,我们定义了模型、损失函数和优化器。接着,我们使用循环进行训练,每个epoch都对整个训练集进行一次遍历。在每个epoch中,我们使用测试集来评估模型的性能,并输出准确率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值