国家已将人工智能作为战略提示出来,在这样的背景下,AI产品经理的缺口巨大,市场上又懂人工智能又懂产品的人才是非常稀缺的。不少同学也开始考虑转型AI产品经理,需要具备什么能力才能成功转型呢?希望同学通过这篇文章对AI有全局的了解。
今天从以下四个方向来介绍
- AI初步了解
- AI产品经理分类
- AI PM的能力模型
- AI应用领域
- 如何从0开始转型?
01. AI初步了解
AI市场情况
大型科技企业快速转向人工智能领域:谷歌、微软、facebook、amazon、百度、科大讯飞、腾讯、阿里巴巴等,全部进入人工智能领域,以前的互联网云栖大会目前已经基本变为人工智能大会了;
市场上人工智能产品经理(AI PM)就业薪资: 国内AI相关产品或技术薪资基本都在年薪30万以上,谷歌脸书等国外一线互联网公司的AIPM年薪更是达到了百万年薪。
人工智能产品经理(AI PM)市场需求:目前国内真正有1年以上经验的AI PM只有两位数,未来一段时间市场会出现井喷现象。
按照在产业结构上AI目前分成了三种类型的公司,在转型时同学们最好先明确自己的兴趣点及优势所在, 从而进行针对性的学习和提升。
01行业+AI
这类公司重在“行业” ,给用户提供AI赋能后的产品或服务。例如:智能家居、智能车载等。未来行业会越来越细分化应用,因此这类产品经理的要求重点对行业的理解上,需要有市场洞察能力及场景分析能力。
这也是产品经理的机会,因为目前2C产品的场景过于开放,而2B的工作场景范围相对限定;弱人工智能可以在有限的场景下进一步工作人员的工作效率并降低企业成本。
02AI+行业
这类公司重在“AI技术” ,属于AI服务性公司,顾客可以通过对应的服务或解决方案来完善自己的产品,从而快速提升产品价值,例如:智能客服,人脸识别等。
这类公司多以2B为主,产品经理需要较强的沟通能力,快速挖掘客户的真实需求。
03平台
还有公司是提供基础AI技术平台,智能服务平台、智能终端平台等, 例如百度,科大讯飞, 帮助企业缩短客户在人工智能研发上的投入成本。那就更看重产品经理对底层技术框架的理解,如果你有研发经验,那就很有优势。
02.AI产品经理分类
AI产品经理工作的本质是造轮子。需要PM挖掘客户需求,以产品化的方式 给用户解决问题,拿互联网来讲, 比如头条,前期的内容框架定型了,再进去的产品经理属于修修补补的工作,不是从0-1的步骤,而面对竞争激烈的AI行业,做AI行业的产品经理更加不容易,是需要有从0-1的产品化能力。
01狭义AI产品经理
通过AI技术,完成相关AI产品的设计、研发、推广、产品生命周期管理等工作的产品经理。近几年基本在语义、语音、计算机视觉和机器学习这四个领域开发。可细分为语义类AI产品经理, 语音类AI产品经理, 视觉类AI产品经理, 机器学习类AI产品经理, 终端应用类AI产品经理。
02广义AI产品经理
间接涉及了语义、语音、计算机视觉和机器学习这4个领域的AI技术、或直接应用了其他还不够成熟的细分领域AI技术(比如:脑机接口、量子计算等),进而完成相关AI产品工作的产品经理。未来,广义AI产品经理也会慢慢向狭义AI产品经理发展。
03.AI PM的能力模型
每个行业的发展都要经过重技术、重产品、重运营,现如今AI行业已经步入重产品阶段。因此行业对AI产品经理的要求如下:
01找准商业变现模式和闭环
陆奇曾说过,人工智能落地最关键的是找到场景和商业模式,做出极致体验,并快速迭代。
目前AI市场实现商业变现主要有两种方式:
▲一种是AI直接产出价值,通过AI来取代部分人力,提高生产效率并节省人力成本,例如智能客服系统等;
▲另一种则是AI赋能人类,为人类决策提供支持,例如AI在医疗领域的应用,辅助医生诊疗,AI都是作为助手的角色来帮助人类。
这些都要求AI产品经理实际参与到业务过程中,需要对相关行业有足够理解。
比如,目前商业化程度做的较好的行业有安防(针对人像数据、车辆数据的智能摄像机、后台分析系统)、金融(智能风控和量化投资的技术应用商业化程度较高)、互联网服务(以翻译、P图、智能推荐、语音转写等服务)、企业服务(智能营销和智能客服),to B的场景主要从提升人工效率、降低人力成本、帮助决策的方向考虑,to C的场景则更侧重于提高便利性。
02把控产品需求
业内通常认为人工智能的发展离不开三大要素:数据、算法、计算力,但人工智能落地的应用场景同样是一款产品能否取得成功的关键。
AI产品经理最核心的技能即通过人工智能技术去重新定义场景和需求,提供一套可行的人工智能解决方案。在明确了具体的需求场景后,需要考虑清楚产品的客户会在当前流程里的哪个环节使用它,以及现有的方案是什么,我们的产品解决方案比现有方案好在哪里。AI产品经理需要快速验证,在瞬息万变的AI领域迅速落地能解决痛点问题的产品,这点比互联网产品经理的挑战系数要大。
03与技术互相成就
产品设计应当从商业盈利以及切实解决用户痛点的角度出发而非技术出发,所以AI产品经理在这个意义上可以根据商业及产品需要反逼技术优化。
此外,AI产品经理还需要拓宽自己的认知极限,了解技术边界,多跟团队里的AI工程师交流,平时也要随时关注AI行业最新动态和变革,阅读前沿paper。
04.AI应用领域
AI目前主要的技术应用领域有3个方向,包括:计算机视觉、深度学习、自然语言处理
而从各大招聘网站浏览了一遍之后,发现目前对人工智能产品经理(AI PM)的定义各不相同,并且差异较大。基本可以理解为两大类型:
智能方向的产品经理
就是PC或移动端产品经理,只不过需要更多的了解其他智能竞品的情况,或是捕捉、挖掘目标客户对产品的智能化需求。例如叮咚音箱就是一个平台,该平台上可以增加各种特定场景下的应用,提供儿童教学的应用,提供对话式学习。而服务层就是具体应用提供的具体软件服务。
▲那最有可能也最容易转型到人工智能产品经理(AI PM)的就是这个智能方向的应用层面产品经理,可理解为转型成为软件服务提供商的产品经理;只不过原来的操作系统变化了、用户交互的终端变化了,对于服务层系统的输入输出方式也变化了。
偏算法型的AI产品经理
这种类型的产品经理与传统PC/移动端产品差别很大,基本上需要深入了解机器学习、深度学习、CNN等技术的原理及简单实现方法,对于数学、统计学方面有较高要求,并且有学校与学历方面的要求,那难度就相对较大。
▲PM需学习基础理论简单的汇总:
- 数学基础:高等数学、离散数学、概率论与数理统计等;
- 基础科学:生物学、物理学、社会学等;
- 计算机科学:机器学习、深度学习、CNN、RNN、DNN等;
- 编程与框架:python、C++、Java、tensorflow、Caffe、ros编程等;
- 硬件:树莓派、传感器、控制器、制动器等;
05.如何从0开始转型?
那做为0基础的小白应该是从AI的概念与应用层入手,逐步深入并找到AIPM所需要理解的技术边界。因此,暂时还不用直接深入到python编程等数学层面,而更多的是理论,可以先学以下几个方向▼
- 了解各种AI技术功能特性与输入输出方式:语音处理、文字处理、视频/图像处理、深度学习等应用技术;
- 了解AI目前市场化的各种相关终端设备与应用场景;
- 了解市场化的传感器组件与可操控模块;
书籍:《人工智能:一种现代的方法》《终极算法:机器学习和人工智能如何重塑世界》《传感器实战全攻略》等
AI产品经理和互联网产品经理,相比较之下,软实力是一样的, 只是因为市场竞争大, 在蓬勃发展期,对AI的产品经理的要求相对较高,需要懂得行业知识,但有大批人已经在转型的路上了,只要保持不断学习,是可以做到的
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓