3 - 一元函数积分学

3 - 一元函数积分学

一、积分的性质

1. 积分对奇偶性的改变

积分会导致函数奇偶性的改变,一般情况下奇函数积分后得到偶函数,偶函数积分后的到奇函数,但是并不绝对。
比如积分限不对称可能会产生影响。

举个例子,对于变限积分,例如 φ ( x ) = ∫ 0 x f ( t ) d t \varphi(x)=\int_{0}^{x}f(t)dt φ(x)=0xf(t)dt ,设 f(x) 的原函数为 F(x)。
φ ( x ) = F ( x ) − F ( 0 ) \varphi(x)=F(x)-F(0) φ(x)=F(x)F(0)

  1. 设 f(x) 为奇函数,即 f ( x ) = − f ( − x ) f(x)=-f(-x) f(x)=f(x)
    设 x > 0 ,则

  2. φ ( x ) = F ( x ) − F ( 0 ) \varphi(x)=F(x)-F(0) φ(x)=F(x)F(0)

  3. φ ( − x ) = − ∫ − x 0 f ( t ) d t \varphi(-x)=-\int_{-x}^{0}f(t)dt φ(x)=x0f(t)dt 令 u = -t , 原式 = − ∫ x 0 f ( − u ) d ( − u ) = ∫ 0 x f ( − u ) d ( − u ) = ∫ 0 x f ( u ) d u = F ( x ) − F ( 0 ) 原式=-\int_{x}^{0}f(-u)d(-u)=\int_{0}^{x}f(-u)d(-u)=\int_{0}^{x}f(u)du=F(x)-F(0) 原式=x0f(u)d(u)=0xf(u)d(u)=0xf(u)du=F(x)F(0)

∴ φ ( x ) = φ ( − x ) \therefore \varphi(x)=\varphi(-x) φ(x)=φ(x)

∵ φ ( 0 ) = F ( 0 ) − F ( 0 ) = 0 \because \varphi(0)=F(0)-F(0)=0 φ(0)=F(0)F(0)=0

∴ φ ( x ) 为偶函数 \therefore\varphi(x)为偶函数 φ(x)为偶函数

  1. f(x) 为偶函数时类似

【注】 不定积分求导运算很简单,可以用于化简方程。 [ ∫ f ( x ) d x ] ′ = ∫ f ′ ( x ) d x = f ( x ) [\int f(x)dx]^\prime=\int f^\prime(x)dx=f(x) [f(x)dx]=f(x)dx=f(x)

2. 分段函数的积分注意隐含连续性

例如求 ∫ e − ∣ x ∣ d x \int e^{-|x|}dx exdx
∫ e − ∣ x ∣ d x = { − e − x + C 1 , x ≥ 0 e x + C 2 , x < 0 \begin{aligned} \int e^{-|x|}dx = \begin{cases} -e^{-x}+C_1, \qquad &x\geq 0 \\ e^{x}+C_2, &x<0 \end{cases} \end{aligned} exdx={ex+C1,ex+C2,x0x<0

虽然题干中没有显示的强调 e − ∣ x ∣ e^{-|x|} ex 连续,但是需要注意到被积函数在 x=0 处连续。

由于 e − ∣ x ∣ e^{-|x|} ex 连续,所以 其原函数必定存在 ,所以 其原函数应在x=0处连续,即应有 − e − x + C 1 ∣ x = 0 = e x + C 2 ∣ x = 0 -e^{-x}+C_1|_{x=0} = e^{x}+C_2|_{x=0} ex+C1x=0=ex+C2x=0 ,则 − 1 + C 1 = 1 + C 2 -1+C_1=1+C_2 1+C1=1+C2 ,令 C 1 = C C_1=C C1=C ,于是有 C 2 = C − 2 C_2=C-2 C2=C2 ,所以
∫ e − ∣ x ∣ d x = { − e − x + C , x ≥ 0 e x + C − 2 , x < 0 \int e^{-|x|}dx = \begin{cases} -e^{-x}+C, \qquad &x\geq 0 \\ e^{x}+C-2, &x<0 \end{cases} exdx={ex+C,ex+C2,x0x<0

3. 化为积分的精确定义

对于一些 n → ∞ n\rightarrow \infty n 的连加或连乘式,可以尝试利用积分的精确定义把原式转化为定积分求解的问题

例如 求
lim ⁡ n → ∞ ln ⁡ ( 1 + 1 n ) 2 ( 1 + 2 n ) 2 ⋯ ( 1 + n n ) 2 n \begin{aligned} \lim_{n\rightarrow \infty} \ln \sqrt[n]{(1+\frac1n)^2(1+\frac2n)^2\cdots(1+\frac nn)^2} \end{aligned} nlimlnn(1+n1)2(1+n2)2(1+nn)2

原式 = 2 lim ⁡ n → ∞ 1 n [ ln ⁡ ( 1 + 1 n ) + ln ⁡ ( 1 + 2 n ) + ⋯ + ln ⁡ ( 1 + n n ) ] = 2 lim ⁡ n → ∞ 1 n ∑ k = 1 n ln ⁡ ( 1 + k n ) = 2 ∫ 0 1 ln ⁡ ( 1 + x ) d x = 2 ( 2 ln ⁡ 2 − 1 ) \begin{aligned} 原式 &=2\lim_{n\rightarrow \infty} \frac1n [\ln(1+\frac1n)+\ln(1+\frac2n)+\cdots+\ln(1+\frac nn)] \\ &=2 \lim_{n\rightarrow \infty} \frac1n \sum _{k=1}^{n} \ln(1+\frac kn) \\ &=2\int_0^1\ln(1+x)dx=2(2\ln2-1) \end{aligned} 原式=2nlimn1[ln(1+n1)+ln(1+n2)++ln(1+nn)]=2nlimn1k=1nln(1+nk)=201ln(1+x)dx=2(2ln21)

其中可以大抵认为 1 n \frac1n n1 就是 dx , k n \frac kn nk 就是 x 。k 由 1 变化到 n ,所以 k n \frac kn nk 由 0 变化到 1 。所以积分区间为 0 到 1 。

此类式子在 提出 1 n \frac1n n1 之后,应当可以将剩下含 k 和 n的部分全部转化成 k n \frac kn nk 的形式。

注意:期间可以利用 lim ⁡ n → ∞ \lim_{n\rightarrow\infty} limn 求极限化简计算

4. 反常积分敛散性判别

  1. 类比无穷级数敛散性的判别,比如 ∫ 1 + ∞ 1 x p d x \int_{1}^{+\infty} \frac1{x^p}dx 1+xp1dx p ≤ 1 p\leq1 p1 时发散, p > 1 p>1 p>1 时收敛; ∫ 0 1 1 x p d x \int_0^1\frac1{x^p}dx 01xp1dx 0 < p < 1 0<p<1 0<p<1 时收敛, p ≥ 1 p\geq1 p1 时发散

    【注】 由上面的例子可以看出来,积分区间的不同会影响到反常积分敛散性的不同,所以例如 ∫ 0 π 2 1 s i n x ⋅ c o s x d x \int_0^{\frac \pi2}\frac{1}{sinx\cdot cosx}dx 02πsinxcosx1dx 可以拆分积分区间( ∫ 0 π 4 1 s i n x ⋅ c o s x d x + ∫ π 2 π 4 1 s i n x ⋅ c o s x d x \int_0^{\frac \pi4}\frac{1}{sinx\cdot cosx}dx+\int_{\frac \pi2}^{\frac \pi4}\frac{1}{sinx\cdot cosx}dx 04πsinxcosx1dx+2π4πsinxcosx1dx ),分别判断敛散性

  2. 类比极限和夹逼定理,对函数做缩放然后判断敛散性。比如 ∫ 0 π 4 1 s i n x ⋅ c o s x d x \int_0^{\frac \pi4}\frac{1}{\sqrt {sinx\cdot cosx}}dx 04πsinxcosx 1dx ∫ 0 π 4 1 s i n x d x \int_0^{\frac \pi4}\frac{1}{\sqrt {sinx}}dx 04πsinx 1dx 同敛散

    【注】 对于 s i n x ⋅ c o s x sinx\cdot cosx sinxcosx x = π 4 x=\frac\pi4 x=4π 是一个特殊的位置,有时需要以它为界做分类讨论

    【注】 函数之间比大小有 设函数求导、相减、相除 三种方法

二、常用积分处理方式

1. “等式两边同时取…”

  1. 等式两边同时对<变量>求导(求全导数/链式求导法则、偏导数、高阶导数)

  2. 等式两边同取 ln

  3. f ( x ) = g ( x ) ⟶ e f ( x ) = e g ( x ) f(x)=g(x) \longrightarrow e^{f(x)}=e^{g(x)} f(x)=g(x)ef(x)=eg(x)

  4. 等式两边在 同一区间 上积分

2. 部分分式展开

可以利用 部分分式展开法 把复杂分式的积分拆分成多个积分之和

3. 分部积分

  1. 如果被积函数中的 一部分 在 求导后 有着更简单的形式,可以考虑使用 分部积分法 得到它的导数

  2. 题干中给 I n = ∫ f ( x , n ) d x I_n=\int f(x,n)dx In=f(x,n)dx 类型时,分部积分法 可以构建递推式

4. 积分中值定理

利用积分中值定理比大小(处理不等式)时,可能得到 f ( ξ 1 ) ( b 1 − a 1 )  和  f ( ξ 2 ) ( b 2 − a 2 ) f(\xi_1)(b_1-a_1)\ 和 \ f(\xi_2)(b_2-a_2) f(ξ1)(b1a1)  f(ξ2)(b2a2) ,最好让 两积分区间没有交集,才好判断 f ( ξ 1 )  和  f ( ξ 2 ) f(\xi_1)\ 和 \ f(\xi_2) f(ξ1)  f(ξ2) 之间的关系。所以必要时可以主动拆分积分区间

5. 积分的几何意义

积分是由无穷多个短边无穷小的“矩形”加和而成,所以如 lim ⁡ n → ∞ ∑ k = 0 n f ( k ) \lim_{n\rightarrow\infty}\sum_{k=0}^{n}f(k) limnk=0nf(k) ,可以考虑泰勒公式或积分的精确定义。

但是当没有 n → ∞ n\rightarrow\infty n 的条件时,则泰勒公式的余项通常不好处理(但知道被积函数高阶导数的正负时,可以得到不等关系),而积分的精确定义又不能使用。

所以可以参考积分的几何意义构建不等式,例如求证 ln ⁡ ( n + 1 ) < 1 + 1 2 + 1 3 + ⋯ + 1 n \ln (n+1)<1+\frac12+\frac13+\cdots+\frac1n ln(n+1)<1+21+31++n1
ln ⁡ ( n + 1 ) = ∫ 1 n + 1 1 x d x < ∑ k = 1 n 1 k \ln (n+1) = \int_1^{n+1}\frac1xdx<\sum_{k=1}^{n}\frac1k ln(n+1)=1n+1x1dx<k=1nk1
对于第一项,当 k=1 时,它是一个宽为1,高为1的矩形,而积分处只有 x=1 一点处高为1,之后逐渐下降,所以此处求和比积分稍大一点

注意,当矩形短边不再是无穷小时,带来的误差可能比真实值小,也可能比真实值大

6. 复杂定积分的等式用常数代换

对于含有复杂定积分的等式,可以把定积分式用一个常数来代换以简化计算
一般适用于如下题这种 f(x) 等于 f(x) 相关的一个定积分的等式

例如 求 f ( x ) = ∫ 0 1 e x + t f ( t ) d t + x f(x) = \int_0^1 e^{x+t}f(t)dt+x f(x)=01ex+tf(t)dt+x
f ( x ) = ∫ 0 1 e x + t f ( t ) d t + x = e x ∫ 1 0 e t f ( t ) d t + x \begin{aligned} f(x) &= \int_0^1 e^{x+t}f(t)dt+x \\ &=e^x\int_1^0 e^tf(t)dt + x \\ \end{aligned} f(x)=01ex+tf(t)dt+x=ex10etf(t)dt+x
所以 令 a = ∫ 0 1 e t f ( t ) d t a=\int_0^1e^tf(t)dt a=01etf(t)dt ,于是有 f ( x ) = a e x + x f(x)=ae^x+x f(x)=aex+x
a = ∫ 0 1 e t ( a e t + t ) d t = ∫ 0 1 a e 2 t d t + ∫ 0 1 t e t d t ⋯ ⋯ = a 2 ( e 2 − 1 ) + 1 解得   a = 2 3 − e 2 所以   f ( x ) = 2 3 − e 2 e x + x \begin{aligned} a&=\int_0^1e^t(ae^t+t)dt \\ &=\int_0^1ae^2tdt+\int_0^1te^tdt \\ &\cdots\cdots \\ &=\frac a2(e^2-1)+1 \\ &解得\ \ a=\frac2{3-e^2} \\ &所以 \ \ f(x)=\frac2{3-e^2}e^x+x \end{aligned} a=01et(aet+t)dt=01ae2tdt+01tetdt⋯⋯=2a(e21)+1解得  a=3e22所以  f(x)=3e22ex+x
【注】 同样可以在重积分的时候使用

7. 变量代换

被积函数中含有以下元素时,可以考虑使用以下变量代换的方式:

  1. 含有 1 − x 2 1-x^2 1x2 时,可以令 x = s i n t x = sint x=sint

  2. 含有 1 + x 2 1+x^2 1+x2 时,可以令 x = t a n t x = tant x=tant

  3. 含有 x \sqrt{x} x 时,可以令 x = t 2 x = t^2 x=t2

8. 利用奇偶性和对称性

利用被积函数的 奇偶性、对称性 简化计算

9. 凑积分

f ′ ( x ) f ( x ) f^\prime(x)f(x) f(x)f(x) 凑积分为 f ( x ) d f ( x ) f(x)df(x) f(x)df(x)

10. 凑可约分项

∫ d t ( 1 + t 2 ) 2 = ∫ 1 + t 2 − t 2 ( 1 + t 2 ) 2 d t = ∫ d t 1 + t 2 + 1 2 ∫ t d ( 1 1 + t 2 ) \begin{aligned} \int \frac{dt}{(1+t^2)^2}&=\int\frac{1+t^2-t^2}{(1+t^2)^2}dt \\ &=\int \frac{dt}{1+t^2}+\frac12\int td(\frac{1}{1+t^2}) \end{aligned} (1+t2)2dt=(1+t2)21+t2t2dt=1+t2dt+21td(1+t21)

四、特殊函数的积分

1. ∫ 1 + ∞ 1 + x 2 1 + x 4 d x \int_{1}^{+\infty}\frac{1+x^2}{1+x^4}dx 1+1+x41+x2dx 的处理

∫ 1 + ∞ 1 + x 2 1 + x 4 d x = ∫ 1 + ∞ 1 x 2 + 1 1 x 2 + x 2 d x = ∫ 1 + ∞ d ( x − 1 x ) 1 x 2 + x 2 − 2 + 2 = ∫ 1 + ∞ d ( x − 1 x ) ( x − 1 x ) 2 + 2 \begin{aligned} &\int_{1}^{+\infty}\frac{1+x^2}{1+x^4}dx \\ =&\int_1^{+\infty}\frac{\frac1{x^2}+1}{\frac1{x^2}+x^2}dx \\ =&\int_1^{+\infty}\frac{d(x-\frac1x)}{\frac1{x^2}+x^2-2+2} \\ =&\int_1^{+\infty}\frac{d(x-\frac1x)}{(x-\frac1x)^2+2} \\ \end{aligned} ===1+1+x41+x2dx1+x21+x2x21+1dx1+x21+x22+2d(xx1)1+(xx1)2+2d(xx1)

2. 含有 1 x \frac1{\sqrt x} x 1 项积分的处理

∫ f ( x ) x d x = 2 ∫ f ( x ) d x \int \frac {f(x)}{\sqrt x}dx=2\int f(x)d\sqrt x x f(x)dx=2f(x)dx

之后可以考虑 令 t = x t = \sqrt x t=x

3. ∫ 1 1 + e t d t \int\frac{1}{1+e^t}dt 1+et1dt 的处理

  1. 方法一

∫ 1 1 + e t d t = ∫ e − t e − t + 1 d t = − ∫ 1 1 + e − t d e − t ⋯ ⋯ \begin{aligned} \int\frac1{1+e^t}dt=&\int \frac{e^{-t}}{e^{-t}+1}dt \\ =&-\int\frac1{1+e^{-t}}de^{-t} \\ &\cdots\cdots \end{aligned} 1+et1dt==et+1etdt1+et1det⋯⋯

  1. 方法二

∫ 1 1 + e t d t = ∫ e t e t ( e t + 1 ) d t = ∫ 1 e t − 1 1 + e t d e t ⋯ ⋯ \begin{aligned} \int\frac1{1+e^t}dt&=\int \frac{e^{t}}{e^t(e^{t}+1)}dt \\ &=\int \frac{1}{e^t}-\frac{1}{1+e^t}de^t \\ &\cdots\cdots \end{aligned} 1+et1dt=et(et+1)etdt=et11+et1det⋯⋯

  1. 方法三
    t = ln ⁡ x t = \ln x t=lnx

  2. 方法四

    x = 1 + e t x=1+e^t x=1+et

4. a x + 1 a − x + 1 \frac{a^x+1}{a^{-x}+1} ax+1ax+1 的处理

a x + 1 a − x + 1 = a x ( a x + 1 ) 1 + a x = a x \frac{a^x+1}{a^{-x}+1}=\frac{a^x(a^x+1)}{1+a^x}=a^x ax+1ax+1=1+axax(ax+1)=ax

5. 1 1 + c o s x \frac1{1+cosx} 1+cosx1 的处理

∫ 1 1 + c o s x d x = ∫ 1 2 c o s 2 x 2 d x = ∫ 1 2 s e c 2 x 2 d x = ∫ d ( t a n x 2 ) \int\frac1{1+cosx}dx=\int\frac1{2cos^2\frac x2}dx=\int\frac12sec^2\frac x2dx=\int d(tan\frac x2) 1+cosx1dx=2cos22x1dx=21sec22xdx=d(tan2x)

6. 求 ∫ 0 + ∞ e − x 2 d x \int_0^{+\infty}e^{-x^2}dx 0+ex2dx

I = ∫ 0 + ∞ e − x 2 d x = ∫ 0 + ∞ e − y 2 d y I 2 = ∫ 0 + ∞ ∫ 0 + ∞ e − ( x 2 + y 2 ) d x d y = ∫ 0 π 2 d θ ∫ e − r 2 r d r = π 4 ∴ I = π 2 \begin{aligned} I&=\int_0^{+\infty}e^{-x^2}dx=\int_0^{+\infty}e^{-y^2}dy \\ I^2&=\int_0^{+\infty}\int_0^{+\infty}e^{-(x^2+y^2)}dxdy \\ &=\int_0^{\frac\pi2}d\theta\int e^{-r^2}rdr \\ &=\frac\pi4 \\ &\therefore I =\frac{\sqrt\pi}{2} \end{aligned} II2=0+ex2dx=0+ey2dy=0+0+e(x2+y2)dxdy=02πdθer2rdr=4πI=2π

7. 华莱士公式

∫ 0 π 2 s i n n x d x = ∫ 0 π 2 c o s n x d x = { n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 3 4 ⋅ 1 2 ⋅ π 2 , n 为正偶数 n − 1 n ⋅ n − 3 n − 2 ⋅ ⋯ ⋅ 4 5 ⋅ 2 3 ⋅ 1 ,    n 为正奇数 \begin{aligned} &\int_0^{\frac\pi2}sin^nxdx=\int_0^{\frac\pi2}cos^nxdx \\ =& \begin{cases} \frac{n-1}n\cdot\frac{n-3}{n-2}\cdot\cdots\cdot\frac34\cdot\frac12\cdot\frac\pi2,\qquad n为正偶数 \\ \frac{n-1}n\cdot\frac{n-3}{n-2}\cdot\cdots\cdot\frac45\cdot\frac23\cdot1,\ \ \qquad n为正奇数 \\ \end{cases} \end{aligned} =02πsinnxdx=02πcosnxdx{nn1n2n343212π,n为正偶数nn1n2n354321,  n为正奇数
【注】 可以利用奇偶性和对称性推广到 ( 0 , π ) (0,\pi) (0,π) ( 0 , 2 π ) (0,2\pi) (0,2π) 积分区间的情况

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值