基本概念的理解与讨论

简单理解与讨论

       大多数的回答来源于各大网友的一些理解与评论,有问题还请各位大咖纠正。
1. 导数、偏导数关系(此外:梯度,法向量,方向余弦)

定义见教材:

       在函数定义域的内点,对某一方向求导得到的导数。方向导数可分为沿直线方向和沿曲线方向的方向导数。向导数可用偏导数表示。
       方向导数(directional derivative)的通俗解释是:我们不仅要知道函数在坐标轴方向上的变化率(即偏导数),而且还要设法求得函数在其他特定方向上的变化率。而方向导数就是函数在其他特定方向上的变化率。
       一个点的方向导数是指各个方向的方向导数。那么沿任何方向的方向导数存在能否推出偏导数存在呢?——答案是不能的
       方向导数存在只能推出沿各坐标轴(例如度x轴)方向的方向导数存在,但倘若沿x轴正半轴方向的方向导数与沿x轴负半轴方向的方向导数不是相反数的话,那么关于x的偏导数就不存在。
       这就类似于一元函数在某点的左右导数都存在,不等于在该点的导数存在。如Y=|X|,在原点O处的方向导数是存在的,左方向导数是-1,右方向导数是1,但是0处的偏导数是不存在的,在空间知上来说,偏导数存在的话,那道个点在那个方向上的切线是存在的,但是方向导数存在,只能说明那条射线是存在的。类似于某点左极限容和右极限与极限的关系。
       在方向导数的定义中那个ρ的范围是大于等于零,而偏导的话Δx可正可负

       因为方向导数是单向的也就是说是一条射线,偏导数是直线。
       举个例子,圆锥的尖部,任意方向的方向导数都存在,但是偏导数不存在。
       一元可导即可微,就二元来说,偏导存在不一定可微,偏导连续才可微。
       偏导数:函数在某点处延坐标轴正向,随着该自变量的变化,而引起的函数值的变化率。
       方向导数:函数在某点的任一方向上,随着该自变量的变化,而引起的函数值的变化率。
       因此它们的区别主要如下:
       1、偏导数只是延坐标轴方向,而方向导数的方向任意;
       2、那么是不是当我们延着坐标轴方向求方向导数时,结果会与偏导数一样呢?我们看到如果是求“延着坐标轴正向”的方向求方向导数,与偏导数是一样的;如果是求“延着坐标轴负答向”的方向求方向导数,结果与偏导数差一个负号。
       方向导数是在某一方向上,对(末函数值-初函数值)/(长度专)取极限,反映的是沿某一方向的函数变化率。对x的偏导数是在y=C这些平面上,对(末函数值-初函数值)/(末自变量-初自变量)取极限,反映的是沿x轴正向的函数变化率。
       偏导数的本质就是 一元函数的导数(比如,固定Y,求X的偏导数)。基于这个观点,一元函数的导数有3种。(左导数,右导数,导数),导数存在的条件是:左导数和右导数都存在且相等。对此,大家思考一下:左导数是不是就是一个方向导数,右导数是不是另一个方向导数呢?
       左导数和右导数皆存在,但是导数不存在。(左导数≠右导数);对此,进行概念上的延伸:方向导数存在,但是方向为𝞹 的方向导数和反方向 方向导数为0 的方向导数不相等,则偏导数不存在

2. 特征值与特征向量(相似对角化)

3. 曲面判断

       z=x2+y2表示的二次曲面是椭球面,柱面,圆锥面,还是抛物面? 如何判断的?        显然这是一个抛物面 。首先x与y的系数是相同的,可以判断出这是绕轴旋转得到的2次曲面 。因为Z是一次,在旋转中Z不变。而x2或者y2转变成了x2+y2 ,所以原函数是抛物线。那面就是抛物面乐 抛物面的一般方程是x2/a2 + y2/b2 = z

       柱面,锥面都是既属于旋转曲面又属于二次曲面,但旋转曲面与二次曲面不存在包含关系。旋转曲面是指在空间中,曲线绕定直线旋转一周所形成的面,所以柱面,锥面,球面都是旋转曲面。
       二次曲面是指三元二次曲线所表示的平面,共有12种。它们分别是:圆柱面;椭圆柱面;双曲柱面;抛物柱面;圆锥面;椭圆锥面;球面;椭球面;椭圆抛物面;单叶双曲面;双叶双曲面;双曲抛物面(马鞍面)。相比较于旋转曲面,二次曲面的范围更大一些,比如马鞍面是二次曲面,但不是旋转曲面。

柱面是有一个轴坐标与另外两个轴没有关系。
抛物线 全称旋转抛物面 是旋转曲面的一种。

       典型柱面方程 x2+y2=4,典型抛物面方程 z=x2+y2。可以看到柱面方程,z可以是任意的,这在几何上表现在柱面相当于xOy面上一条曲线往z轴拉伸形成三维曲面。而抛物面可以看作抛物线z=x2绕z轴旋转一周形成的曲面
有一个很简单好用的办法,你直接把某一个坐标的置位0,看看剩下的那个平面曲线是什么,原理是这样可以一个曲线和坐标平面的交线。例如z=x2+y2,你将y置为0,得到z=x2,显然是抛物线了。变化的形式为如果有z=(x-1)2+(y-1)2,这是一个平移了的旋转抛物面,你要看出来得让y=1

例:
其中1,2,4旋转面;3为椭圆抛物面。

4. 曲线判断

1、 公式法
2、 利用旋转变换
平移变换,旋转变换,反射变换
线性变换
例:形状不变,但大小可以改变的变换是()
A.平移变换B.相似变换C.旋转变换D.轴对称变
A、平移变换是原图形中的点都沿着平行的途径运动一个恒等的距离,故错误;
B、形状不变,但大小可以改变的变换专是相似变换,故正确;

C、旋转变换是原图形中的点都绕着一个固定的中心点转动一个恒等的角度,故错误;

D、轴对称变换是由反射产生一个图形的映象的过程,故错误.属故选B.
旋转不改变图形的形状和大小,只改变图形的位置,

5. 梯度方向

       梯度的方向是如何确定的?是以两个偏导数的直线确定的坐标系来确定呢,还是以原坐标系确定呢?
       在向量微积分中,标量场的梯度是一个向量场。标量场中某一点上的梯度指向标量场增长最快的方向,梯度的长度是这个最大的变化率。更严格的说,从欧几里得空间Rn到R的函数的梯度是在Rn某一点最佳的线性近似。在这个意义上,梯度是雅可比矩阵的一个特殊情况。
       在单变量的实值函数的情况,梯度只是导数,或者,对于一个线性函数,也就是线的斜率。光滑曲面上任意一点的切平面垂直于梯度向量。这说明梯度向量是曲面的法向量。
       曲线就是曲面被Z=0所截,得到的等高线(个人理解),所以其梯度方向垂直于等高线切线

6. 狄利克雷函数
       狄利克雷函数(Dirichlet function)是一个定义在实数范围上、值域为的不连续函数.当自变量为有理数时,; 自变量为无理数时,.狄利克雷函数的图像关于轴成轴对称,是一个偶函数;它处处不连续;处处极限不存在;
7.矩阵相似
       矩阵A与B相似,则B=P -1AP,可逆矩阵是初等阵的乘积,所以A可以经过初等变换化为B,而初等变换不改变矩阵的秩,所以r(B)=r(A)。 矩阵A与B相似,必须同时具备两个条件:

(1)矩阵A与B不仅为同型矩阵,而且是方阵。
(2)存在n阶可逆矩阵P,使得P-1AP=B。

扩展资料:
相似矩阵的性质:
1、若n阶矩阵A与B相似,则A与B的特征多项式相同,从而A与B的特征值亦相同。
2、相似矩阵的秩相等。
3、相似矩阵的行列式属相等。
4、相似矩阵具有相同的可逆性,当它们可逆时,则它们的逆矩阵也相似。
       矩阵A与B相似,则B=P-1AP,可逆矩阵是初等阵的乘积,所以A可以经过初等变换化为B,,而初等变换不改变矩阵的秩,所以r(B)=r(A)。

8.两个矩阵相似,为什么它们的秩相等?
       B 相似 A,存在可逆阵X,使得A=X -1BX,|A|=|X -1||B||X|=|B| 两个矩阵行列式值相等,必有秩相等。
       网友:楼上是错的,如果A,B行列式等于0,就不能说明秩相等,只能说明它们都不是满秩设n阶矩阵A,B,由于A~B,存在可逆矩阵T(其逆矩阵为T -1, rank(T)=rank(T')=n),使T'AT=B,根据矩阵乘积的秩不大于各矩阵的秩rank(B)≤min(rank(T'),rank(T),rank(A))
       如果A B行列式都不为零,有 B相似A,存在可逆阵X, A=X -1BX, |A|=|X^(-1)||B||X|=|B| 两个矩阵行列式值相等,必有秩相等
9. 对同构的理解
10. 一个空间的维数与基的关系
       见教材
       例:矩阵A=[a1,a2,a3,a4,a5]的秩为3,[a1,a2,a3]的秩为3。所以A 的维数是3(即A为一个3维空间),(a1,a2,a3)是其一组基。
11. 基底与坐标系有什么关系啊?
       平面上两个不共线的向量可以作为平面的一组基底,这样一来,同一平面的基底有无穷多组.为了便于处理同一平面上向量之间的关系和运算,于是,在平面上选取两个特殊位置关系,且长度简单的向量作为该平面的一组基底----互相垂直的两个单位向量.并且一个取x轴正方向的单位向量,另一个取y轴正方向的单位向量,于是,就与平面直角坐标系联系在一起了.先有基,才有坐标系的,故坐标系是由基确定的.
       假设线性子空间的基B={v1,v2,...,vk}, 此时B定义了一个坐标系。向量 a = v1c1+v2c2+...+vkck,那么它们的系数(c1,c2,...,ck)便称为向量a在坐标系B下的坐标。换句话说,坐标是向量在某组基下的表示。注意的是,坐标是一个点。
       向量也称为矢量,是具有方向和大小的量。        如果一组向量彼此线性无关,那么它们就可以成为度量这个线性空间的一组基,从而事实上成为一个坐标系,其中每一个向量都躺在一根坐标轴上,并且成为坐标轴的基本度量单位(长度为1)。
       矩阵就是由一组向量组成的,如果矩阵非奇异的话,那么组成这个矩阵的那一组向量也就是线性无关的了,也就可以成为度量线性空间的一个坐标系。那么也可以说,矩阵描述了一个坐标系。
12. 坐标系为什么是正交的?
       有没有平面锐角或钝角坐标系呢?直角坐标系带来的好处是什么呢?
       我们先来说说什么是坐标系... 如果放在三维欧式空间来说,任意三个线性无关的向量都可以成为一组基(或者叫坐标系),也就是说他们的线性组合可以表示空间中任何其他的向量。
       向量A=(1,0),B=(0,1),我们总是以惯性思维的认为,用这两个向量直接相乘,得到结果为0,然后认为它是垂直的。难道在直角坐标系下有向量A=(1,0),B=(0,1),莫非在非直角坐标系下就没有这样的向量A=(1,0),B=(0,1)了吗?结果是有这样的向量的。这样的向量在平面上有无数个。
       那究竟它为什么会垂直呢?主要是因为在直角坐标系中,我们取了一组正交基—两个垂直的基(或特殊的标准正交基)若为P=[1,0;0,1],其列向量即为基,所以两个向量相乘时,我们默认直接相乘得到结果0,即视为垂直,而实际正确的的乘法应为APB,只不过通过我们习惯上都是直接写为AB。若换为另一组基P1,则AP1B他们的结果将不再是0,即结果不在是垂直的。因此在直角坐标系下,两个向量相乘就直接各自分量对应相乘。
       一般都是根据选择的基来确定坐标系
       可以证明这样的坐标系有无穷多种,选择正交是因为它形式简单,
       1,求坐标。可以举一个正交基中常用基的例子,你可以很容易写出向量在常用基下的坐标。例如写一个向量,(299,792,458),你可以很容易地写出它在基(1,0,0),(0,1,0),(0,0,1)下的坐标,因为坐标和它本身其实完全一样。如果是其他基就需要用线性方程组求解坐标了。该已知向量一般是在标准直角坐标系下的,所求的新坐标就是在该基(新坐标系)下的坐标.
       2,求度量矩阵。度量矩阵是反映一组基的度量性质的,需要进行基矩阵之间的矩阵乘法运算去求得,正交基的性质决定它的度量矩阵是对角矩阵,如果是标准正交基,那么他的度量矩阵将是单位矩阵,这无疑是非常方便的,因为求内积需要用到度量矩阵。
13. 坐标谁最先提出的?
       据说有一天,法国哲学家、数学家笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上找到有顺序的三个数。反过来,任意给一组三个有顺序的数也可以在空间中找出一点P与之对应,同样道理,用一组数(x、y)可以表示平面上的一个点,平面上的一个点也可以有用一组两个有顺序的数来表示,这就是坐标系的雏形。
       直角坐标系的创建,在代数和几何上架起了一座桥梁,它使几何概念用数来表示,几何图形也可以用代数形式来表示。由此笛卡尔在创立直角坐标系的基础上,创造了用代数的方法来研究几何图形的数学分支——解析几何,他大胆设想:如果把几何图形看成是动点的运动轨迹,就可以把几何图形看成是由具有某种共同特征的点组成的。举一个例子来说,我们可以把圆看作是动点到定点距离相等的点的轨迹,如果我们再把点看作是组成几何图形的基本元素,把数看作是组成方程的解,于是代数和几何就这样合为一家人了。
14. 对矩阵初等变换的理解?初等矩阵?
       见教材
       初等变换不改变矩阵的秩?
       初等变换不改变矩阵的行列之间的线性相关性,所以不改变矩阵的秩,但是会改变特征值。
       初等变换就是对矩阵左乘或者右乘一个方阵左行右列进行变换,而这些方阵都是满秩矩阵,所以进行初等变换之后,矩阵的秩不会发生改变.
       如果若干个向量线性无关,那么它们的线性组合所形成的新向量也是线性无关的,矩阵变换后行向量(列向量)是原来的行向量(列向量)线性组合的结果,如果矩阵秩为n,那么它有n个线性无关的向量,矩阵变换后也有n个线性无关的向量,因此秩也为n...
15. 一个矩阵乘以可逆矩阵为什么秩不变????
       为什么如果一个矩阵B左乘一个矩阵A,那么AB这个矩阵的秩一定小于等于原矩阵B的秩? 也就是 Rank (AB) <= Rank (B).两个矩阵乘积的秩为何能小于两个中小的那个?
       网友:楼主说的应该是r(AB)<=min(r(A),r(B)).证明很简单,但是方法很重要

       设AB=C,将矩阵B分块为B=(b1,b2,bs) ,C分块为C=(c1,c2,cs),则AB=(Ab1,Ab2,Abs) = (c1,c2,cs).即 Abi=ci 其中i=1,2,,,,s.可知矩阵C的第i个列向量均是由矩阵A的所有列向量线性组合而成,而组合系数即为矩阵B的第i列的各分量。既然C可以由矩阵A线性表示,即r( C )<=r(A).同理对B进行行分块也可证明.

16. 请问特征值和秩有什么关系?或者特征向量和秩有什么关系?
       矩阵的秩
       1、定义:矩阵的阶梯形中非零行的个数称为A的秩.        https://zhidao.baidu.com/question/2080667330893017028.html
       如果矩阵bai可以对角化,那么非0特征du值的个数就等于矩阵的秩;如果矩阵不可以zhi对角化,这个dao结论就不一定成立了。
17.基础解系
       定义:齐次线性方程组的解集的极大线性无关组称为该齐次线性方程组的基础解系。基础解系是线性无关的,简单的理解就是能够用它的线性组合表示出该方程组的任意一组解,是针对有无数多组解的方程而言的。基础解系不是唯一的,因个人计算时对自由未知量的取法而异,但不同的基础解系之间必定对应着某种线性关系。
       例:
       该方程中只需要确定一个未知数,便可以得到其他未知数,故不确定未知数个数为1, 当 故基础解系可以表示为 故基础解系可以表示为 可以发现这两个基础解系是成一个倍数的关系,故基础解系只有一个。基础解系个数=N-R(A)
       例:        该方程中至少需要确定1个未知数,才可以得到其他未知数,此时系数矩阵的秩为2,因为是可以直接求出来的,基础解系个数为1.
       若方程变为        该方程中至少需要确定2个未知数,才可以得到其他未知数,此时系数矩阵的秩为1,基础解系个数为2. 每个基础解系之间是线性无关的。如果线性相关,表示成一个就可以了。
18.基础解系和特征向量的区别
       基础解系:是对于方程组而言的,方程组才有所谓的基础解系,就是方程所有解的“基”解向量:是对于方程组而言的,就是“方程组的解”,是一个意思.

       特征值向量:对于矩阵而言的,特征向量有对应的特征值,如果Ax=ax,则x就是对应于特征值a的特征向量

       基:对于空间而言的,空间有它的“基”,就是线性无关的几个向量,然后空间中的任何一个向量都能由“基”的线性组合来表示.

19.基础解系
       一个函数列收敛到某个函数,一定要看它是在哪个空间里面收敛,在什么范数下收敛的,比如SOBLEV空间中的收敛与实分析中的收敛。

https://blog.csdn.net/u010182633/article/details/54093987

20.闭包
       集合A的内部是A的最大开子集,同样地,我们也能构造一个包含A的最小闭集,这个集合就成为A的闭包(closure)并用cl(A)或A¯表示。
R1中,cl((0,1])=[0,1],另外注意A是闭集当且仅当cl(A)=A

       例1:找出R中A=[0,1)∪{2},A=[0,1)∪{2}的闭包。
       解: 该集合的聚点是[0,1],所以闭包是[0,1]∪{2},这很明显是包含A的最小闭集。
       例2: 对于任意A⊂Rn,说明Rn∖cl(A)是开集。
       解: cl(A)是闭集,那么它的补是开集。

       例3: cl(A∩B)=cl(A)∩cl(B)成立吗?
       解: 答案为否。例如令A=[0,1],B=(1,2],那么A∩B=∅并cl(A)∩cl(B)={1}。

       当一个集合 S 在某个运算下不闭合的时候,我们通常可以找到包含 S 的最小的闭合集合。这个最小闭合集合被称为 S 的(关于这个运算的)闭包。例如,若把自然数集看作实数集的子集,它在减法下的闭包就是整数集。一个重要的例子是拓扑闭包。闭包的概念推广为伽罗瓦连接,进一步为单子(英语:Monad (category theory))。 注意集合 S 必须是闭合集合的子集,这样才能定义闭包算子。在前面的例子中,实数在减法下闭合是重要的,减法不总是在自然数的定义域中有定义的。

21.正交与线性无关
       先举例说明线性无关为什么不一定正交,如向量x=(1, 1), y=(1, 0) 两者明显线性无关,但是x·y≠0。直观地可以这么理解,线性相关可以看成平面上平行的直线,线性无关就是两相交直线。两直线正交,即垂直相交,当然线性无关,然而相交却不一定垂直(正交)。
       下面从数学上严格证明一下为什么两个非零正交向量一定线性无关。(因为 向量与任何向量都正交,也与任何向量线性相关,所以我们得先排除这种情况)证明:若非零向量 相互正交,即它们的内积满足 (若用点乘表示内积的话就是 ).假设 线性相关,则存在不全是0的常数 满足 .根据内积的线性,以及 与任何向量的内积都为 可得 其中第三个等号用到了 这个条件.由于 ,因此由内积定义可知 ,那么由上式可知 .类似地,通过 可得 .这与 不全为 相矛盾,因此 必须是线性无关的. 证毕!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值