本文是对OpenCV2.4.13文档的部分翻译,作个人学习之用,并不完整。
模板匹配是在图像中找到一个类似于模板图像的技巧。
原理:
我们需要两个组件:原图像、模板图像(碎片图像patch)
为了定义匹配区域,我们将模板图像和原图像比较来滑动匹配。
滑动匹配就是将模板图像每次移动一个像素(从左至右,从上到下),在每个位置计算一个表示匹配程度的指标。
对于I上的每一个位置T,将指标值存储到一个矩阵R中,R中的每个位置( x , y)包含了匹配的指标。
上面的图像就是滑动模板存储指标TM_CCORR_NORMED的结果R。最亮的位置表示与模板最为匹配,即图中的红色圆圈处,所以该位置定义的区域(矩形框)就是与模板图像最匹配的地方。
实际使用中,我们用minMaxLoc函数来定位矩阵R中的最大值/最小值。
匹配方法
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv;
/// Global Variables
// 图像、模板、结果矩阵
Mat img; Mat templ; Mat result;
// 窗口名称
const char* image_window = "Source Image";
const char* result_window = "Result window";
int match_method;
int max_Trackbar = 5;
/// Function Headers
void MatchingMethod( int, void* );
/**
* @function main
*/
int main()
{
/// 载入图像和模板
img = imread("lena.jpg", 1 );
templ = imread("lena_eye.jpg", 1 );
/// 创建窗口
namedWindow( image_window, WINDOW_AUTOSIZE );
namedWindow( result_window, WINDOW_AUTOSIZE );
/// 创建滑动条来输入匹配方法,每次变化都调用MatchingMethod函数
const char* trackbar_label = "Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED";
createTrackbar( trackbar_label, image_window, &match_method, max_Trackbar, MatchingMethod );
MatchingMethod( 0, 0 );
// 等待按键
waitKey(0);
return 0;
}
/**
* @function MatchingMethod
* @brief Trackbar callback
*/
void MatchingMethod( int, void* )
{
/// 将原图像拷贝到显示矩阵中
Mat img_display;
img.copyTo( img_display );
/// 创建结果矩阵,存储对每个模板位置的匹配结果,大小将能容纳每个位置的匹配
int result_cols = img.cols - templ.cols + 1;
int result_rows = img.rows - templ.rows + 1;
result.create( result_rows, result_cols, CV_32FC1 );
/// 执行模板匹配操作(输入图像I,模板T,结果R,匹配方法)
matchTemplate( img, templ, result, match_method );
// 标准化
normalize( result, result, 0, 1, NORM_MINMAX, -1, Mat() );
/// 定位最大值和最小值
double minVal; double maxVal; Point minLoc; Point maxLoc;
Point matchLoc;
// 指标原数组,存储最小值的变量,存储最大值的变量,最小值的位置,最大值的位置,掩码矩阵(可选))
minMaxLoc( result, &minVal, &maxVal, &minLoc, &maxLoc, Mat() );
/// 对于方法SQDIFF和SQDIFF_NORMED,最佳匹配是最小值,其他方法的最佳匹配是最大值,将结果保存在matchLoc变量中
if( match_method == CV_TM_SQDIFF || match_method == CV_TM_SQDIFF_NORMED )
{ matchLoc = minLoc; }
else
{ matchLoc = maxLoc; }
/// 显示结果,在最可能匹配的位置画一个矩形
rectangle( img_display, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
rectangle( result, matchLoc, Point( matchLoc.x + templ.cols , matchLoc.y + templ.rows ), Scalar::all(0), 2, 8, 0 );
imshow( image_window, img_display );
imshow( result_window, result );
return;
}
结果:
其中CCORR和CDEFF匹配的结果错误,而他们标准化后的版本却正确,这可能是由于我们只考虑了最大匹配而没有考虑其他可能的情况。