PID
文章平均质量分 87
长安程序猿
这个作者很懒,什么都没留下…
展开
-
【抗扰PID控制】干扰抑制PID控制器研究(Matlab代码实现)
随之而来的内部稳定性条件为DR-PID设计提供了有效的指导,DR-PID具有无限的增益裕量和最少的工厂信息。因此,已经提出了一些改进的PID控制器,称为干扰抑制PID(DR-PID),以提高控制性能,并假设工厂模型是确切已知的[24],[25],[26],[尽管在过去的几十年中已经提出了富有成效的。,但PID控制器及其变体继续在过程控制中超过90%的控制回路中占据主导地位[1],[2],[3],[4],[5],[6],[7],.已经提出了一些著名的调谐规则来增强PID控制器的控制性能[9],[10],[原创 2023-06-25 20:21:54 · 669 阅读 · 0 评论 -
【最优PID 整定】PID性能指标(ISE,IAE,ITSE和ITAE)优化、稳定性裕量(Matlab代码实现)
困难部分来自一些 对控制系统性能的要求很高,部分是由于PID参数对控制的影响复杂 性能。[1]宋尚飞,刘轩章,陈宏举,康琦,李宸轩,邓涛,吴海浩,史博会,宫敬.PID控制参数对重力式三相分离器生产工艺的影响[J].石油科学通报,2023,8(02):179-192.使用mordern优化技术,可以根据工厂的实际传递函数调整PID控制器,以优化闭环性能。此提交包含一个功能,用于根据四个不同的性能指标(例如ISE,IAE,ITSE和ITAE)执行最佳PID设计。PID控制器是工业系统中使用最广泛的控制器。原创 2023-06-13 20:03:55 · 1282 阅读 · 0 评论 -
一种对不同类型齐格勒-尼科尔斯 P-I-D 控制器调谐算法研究(Matlab代码实现)
比例-积分-微分(PID)控制器是从上世纪初开始,在自动控制领域具有悠久历史的三任期控制器。由于其直观性和相对简单性,除了能够在各种过程中提供令人满意的性能外,它实际上已成为工业环境中的标准控制器。,例如ON-OFF,P,PI,PD,PID所有不同的类型和实现。所有传统控制器的一个特点是,必须知道过程的数学模型才能设计控制器。如今,许多不同的控制器被用于工业和许多其他领域。• 传统控制器 • 非常规控制器 作为传统控制器,我们可以计算多年来已知的控制器。博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。原创 2023-06-13 19:35:51 · 338 阅读 · 0 评论 -
专家PID控制轨迹跟踪研究(Matlab代码实现)
大的积分增益有利于消除稳态误差,但会使系统过渡过程变长。由于专家控制不依赖对象的精确模型,并且对系统时变、非线性具有很好的鲁棒性,结合PID控制优点,设计专家PID控制器,根据不同时刻误差e以及误差变化△e 之间的关系,利用专家控制规则对Kp、Ki、Kd。这3个参数进行在线修改,以适应电动舵机系统参数、负载变化下的跟踪控制需求,专家PID控制原理如图5所示。[1]陈宝,周祖鹏,卫欢,吕延钊,睢志成.基于专家PID的带臂四旋翼无人机控制方法[J].计算机应用,2022,42(08):2637-2642.原创 2023-06-05 09:00:33 · 501 阅读 · 0 评论 -
基于UDQ的并网单相逆变器控制【同步参考系下单相并网全桥正弦PWM逆变器闭环控制】(Simulink)
在电能、煤炭、石油、天然气等能源中,电能的普及应用最为广泛,日常生活中人们对电能越来越依赖。但是运行中依旧不断有弊端,如特高压电网对输电技术要求不断完善,增加了运行难度,配电系统的多样性和分布式网络负荷等单一问题。在能源生产过程中,煤炭资源占据的比重高达70%,对生产地周围的环境造成了重大的影响造成雾霾、酸雨等有害天气,对居民的日常生活影响极大。在全球范围内,电能容量逐渐提升,如图1.1。但与此同时,也会带来一定的缺点:逆变器不能接本地端口,在本地状态下只能在并网状态下运行,这样造成利用率过低。原创 2023-05-02 11:00:54 · 1722 阅读 · 0 评论 -
【无功功率控制】连接到无限电网的小型风电场的无功功率控制(Simulink)
其输入为系统调度经过判断后给风机的参考有功功率 Pdrn和参考无功功率 Qdrn ( 参考值在风电机组的能力范围内) 、系统的并联电压有效值 VL和并联电压的相位 θVL,输出为对应的有功功率和无功功率的电气量。调度经过判断后给风机的参考有功功率 Pdrn和参考无功功率 Qdrn,根据功率的计算公式,得到可控电流的指令值( 电流瞬时值) ,然后通过可控电流源将指令信号转化为相应信号的电气量。传输线路功率模型根据文献[8]可知,输电线路的参数有 4 个: 反映线路通过电流时产生的有功功率损失效应的电阻;原创 2023-04-30 22:05:23 · 968 阅读 · 0 评论 -
增强型PID-自适应-前馈-神经网络控制研究(Matlab代码实现)
文献来源:自适应RBFNN控制学习在目标机器人的结构和参数事先未知时控制机器人机械手。遗憾的是,目前的自适应RBFNN控制器需要一个大规模的神经网络来近似机器人操纵器的动力学,并且无法保证学习性能收敛。本文提出的方法不仅减小了神经网络的规模,大大减轻了计算负担,而且明显实现了更好的学习性能。仿真算例表明,与传统格方案相比,该方法的控制精度提高了35倍以上,神经网络规模缩小了倍隐节点格分布的复合自适应径向基函数神经网络(RBFNN)控制存在三个固有缺点:1)自适应RBFNN的近似域难以确定 先验;原创 2023-04-29 22:13:53 · 1033 阅读 · 0 评论