n8n推出自托管 AI 入门工具包,可在本地快速部署AI项目和低代码开发环境

介绍

在这里插入图片描述

Self-Hosted AI Starter Kit

n8n推出了Self-Hosted AI Starter Kit 自托管 AI 入门工具包,帮助用户在本地或私有云环境中快速部署AI项目。此工具包利用Docker Compose模板,包含多种本地AI工具(如Ollama、Qdrant和PostgresQL),并提供AI工作流模板和网络配置,简化了本地AI工具的安装和使用。

  1. Self-hosted AI Starter Kit简介

    • 目的:n8n响应用户需求,提供了一个可以在本地运行AI的解决方案,以确保数据隐私和降低成本。
    • 优势:通过在本地运行AI,用户可以避免外部模型API调用的不可预测费用,转而投资于自己的基础设施,如GPU,这可能前期成本较高,但长期来看可以节省显著的成本。同时,数据隐私得到保障,因为所有数据都控制在用户自己的环境内。
  2. Self-hosted AI Starter Kit特点

    • 易部署:这是一个基于Docker Compose模板的解决方案,包括n8n和一系列精选的本地AI工具,旨在快速启动自托管AI工作流。
    • 包含内容
      • 快速安装和设置本地AI工具,如Ollama、Qdrant和PostgresQL。
      • 预配置的AI工作流模板,可以直接使用。
      • 网络配置,支持本地部署或个人云实例,如Digital Ocean和runpod.io。
    • 适用性:虽然这个启动套件不是为生产环境完全优化的,但它结合了强大的组件,适用于概念验证项目,并且可以根据具体需求进行定制。
  3. 为什么选择n8n进行AI

    • AI应用构建块:n8n提供了无尽的AI可能性,从简单的QA聊天机器人到自动多步骤代理,用户可以拖放每个AI应用组件,同时保留完全的自定义控制权。
    • 集成自有和商业产品:n8n预构建了超过400个集成,支持Google、Slack、Twilio和JIRA等服务,用户可以专注于集成,而无需管理大量依赖。
    • 自动化、调试和维护:n8n的UI强大而不限制用户,允许在需要时回落到代码,导入cURL请求或触发webhooks和队列等。
  4. n8n使AI变得实用

    • 数据流动:AI本身并不直接产生成果,需要从某处获取数据并导出结果。n8n填补了这些差距,使技术和非技术用户都能从第一天开始构建AI应用。
    • 灵活性和可扩展性:n8n的模块化特性使其易于跟上AI社区的变化,新模型发布时n8n可以立即提供支持,无需升级或重启,过时的模型可以轻松切换。
  5. 社区和资源

    • 社区论坛:n8n鼓励用户加入社区论坛,分享项目和想法,探讨如何构建AI工作流。
    • GitHub仓库:提供了下载和部署的指南,用户可以给项目加星并关注以获取未来更新。
      在这里插入图片描述
### 关于 n8n 的入门与使用指南 #### 什么是 n8n? n8n 是一款强大的自动化工具,它提供了灵活的工作流设计能力,适用于多种复杂业务场景。学习 n8n 不仅能帮助用户掌握其核心概念,还能探索更高级的应用技巧[^1]。 #### 自托管 AI 工具包 为了满足不同用户的多样化需求,n8n 推出了自托管 AI 入门工具包。这一功能允许开发者在本地环境中快速部署 AI 项目,并提供低代码开发的支持。无论是技术型还是非技术型用户,都可以利用 n8n 构建自己的 AI 应用程序。此外,n8n 的模块化架构使得整个系统具备高度的灵活性可扩展性,在面对新技术或模型更新时表现出极强的适应力[^2]。 #### Docker 部署 n8n 如果计划将 n8n 运行在一个隔离的容器中,则可以考虑采用 Docker 技术实现。下面是一条典型的命令用于启动带有日志挂载的数据卷实例: ```bash docker run -d \ -v /usr/local/logs/n8n:/logs/n8n \ --name n8n-instance \ -p 5678:5678 \ my-n8n-image:latest ``` 上述脚本中的 `-v` 参数指定了主机路径 `/usr/local/logs/n8n` 映射至容器内部的日志存储位置 `/logs/n8n`,从而方便后续维护操作[^3]。 #### 浏览器自动化补充 对于某些涉及网页交互的任务,比如抓取公开数据或者模拟登录验证等场景,可以通过 Browserless 来增强 n8n 的功能性。例如加载 Wikipedia 页面内容的操作如下所示: ```javascript const { Browserless } = require('@browserless/client'); (async () => { const browserless = new Browserless('http://localhost:3000'); const text = await browserless.text({ url: 'https://en.wikipedia.org/wiki/Main_Page' }); console.log(text); })(); ``` 此段 JavaScript 脚本展示了如何借助 `@browserless/client` 模块完成远程控制无头浏览器的行为采集指定网站上的文字信息[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码流怪侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值