模型压缩与小模型炼丹

本文探讨了模型压缩的方法,包括手工设计网络、NAS搜索和DepthShrinker技术,以适应硬件和任务需求。此外,还介绍了标题训练法,如虚竹训练法和大模型蒸馏小模型等策略,通过预训练、重参数化和数据增强提升小模型的性能。
摘要由CSDN通过智能技术生成

模型压缩

1、手工设计网络
这个需要综合考虑硬件本身的特性以及任务特性;
对输入io、网络的并行化、不同的backbone结构(深度、宽度,层次)、输出后处理等调节,设计出较优的网络
2、nas搜索网络
3、DepthShrinker(深度压缩)
把relu换成leaky,正向固定斜率为1,负向设置一个0到1的可学习斜率;训出来如果负向斜率大,说明网络希望这个relu变成identity,说明这个relu可以扔掉;扔掉非线性,那么前后两个conv可能就可以merge;压缩了网络的深度。

标题训练法:

1、虚竹训练法,尝试不同模型,每次都用上一阶段的pretrain,像传功力一样。
2、重参数化,增加了网络的复杂度的同时,不改变部署的网络结构
3、大模型蒸馏小模型
4、大数据集pratrain
5、大epoch,小模型往往更难训练,需要更大的epoch才能看出小模型的上限。甚至300个epoch都不够。
6、任务自带的场景有用的tricks,如data augmatetion、loss fuction\iou分支等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yang_daxia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值