【读论文】Generalized Discriminant Analysis Using a Kernel Approach(2000)

这篇论文提出了广义判别分析(GDA),一种使用核方法处理非线性判别分析的新方法,类似于支持向量机(SVM)。GDA通过将输入数据映射到高维特征空间实现非线性分类,并在小规模数据集上的表现与SVM和概率神经网络竞争。论文讨论了GDA的代数形式、特征值解析以及与LDA的关系,指出GDA提供了一个精确解,而不依赖于优化近似,且更易于扩展到多类问题。
摘要由CSDN通过智能技术生成

【读论文】Generalized Discriminant Analysis Using a Kernel Approach(2000)

使用核方法的广义判别分析
DOI:10.1162/089976600300014980

摘要:

We present a new method that we call generalized discriminant analysis (GDA) to deal with nonlinear discriminant analysis using kernel function operator. The underlying theory is close to the support vector machines (SVM) insofar as the GDA method provides a mapping of the input vectors into high-dimensional feature space. In the transformed space, linear properties make it easy to extend and generalize the classical linear discriminant analysis (LDA) to nonlinear discriminant analysis. The formulation is expressed as an eigenvalue problem resolution. Using a diff

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

氧艺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值