poj 2253 Frogger 最小生成树

点这里

模板题

oj崩了就没心情改了。。。

只要找出最后一条边就可以了 

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#define MIN 0x3f3f3f
#define MAX_Point 105
using namespace std;
const int maxn=200005;
const int maxm=200005;
int F[maxn],p,q;
double max1;
struct Edge
{
    int u,v;
    double w;
}edge[maxm];
struct Edge2
{
    int i,x,y;

}edge1[maxm];
int tol;
void addedge(int u,int v,double w)
{
    edge[tol].v=v;
    edge[tol].u=u;
    edge[tol++].w=w;
}
bool cmp(Edge a,Edge b)
{
    return a.w<b.w;
}
int fnd(int x)
{
    return x==F[x]?x:F[x]=fnd(F[x]);
}
double kruskal(int n)
{
    for(int i=0;i<n;i++) F[i]=i;
   // sort(edge,edge+tol,cmp);
    int cnt=0;
    double ans=0;
    for(int i=0;i<tol;i++)
    {
        int u=edge[i].u;
        int v=edge[i].v;
        double w=edge[i].w;
        int a=fnd(u);
        int b=fnd(v);
        if(a!=b)
        {
            ans+=w;
            F[b]=a;
            cnt++;
        }
        if(fnd(0)==fnd(1))
        {
            max1=w; return 0;
        }
        if(cnt==n-1)break;
    }
    if(cnt<n-1)return -1;
}

int main()
{
    int n;double x;int d=1;
    while(~scanf("%d",&n))
    {  if(n==0)  break;
           p=0,q=1;
       for(int i=0;i<n;i++)
       {  int x,y;
           edge1[i].i=i;
          scanf("%d %d",&edge1[i].x,&edge1[i].y);}
          tol=0;
        for(int i=0;i<n;i++)
       {
           for(int j=i+1;j<n;j++)
           {

             x=sqrt((edge1[i].x-edge1[j].x)*(edge1[i].x-edge1[j].x)+(edge1[i].y-edge1[j].y)*(edge1[i].y-edge1[j].y));
           // printf("%.2lf\n",x);
             addedge(i,j,x);
             addedge(j,i,x);
           }
       }

         sort(edge,edge+tol,cmp);
               kruskal(n);
        printf("Scenario #%d\n",d++);
        printf("Frog Distance = %.3f\n\n",max1);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值