UA-DETRAC数据集重新划分,提升检测精度(yolo格式)

    因为在UA-DETRAC数据集中,训练集和测试集是不同路口处的相机拍摄得到的结果,训练集和测试集间的差别比较大,单纯使用训练集训练后用测试集进行测试,效果不会太好,亲测用yolov5训练map只能到50左右。

    总之效果不是太好,不清楚论文中大佬map可以到90多怎么来的,所以自己重新清洗了数据,把train和test混在一起,然后重新分配8:2比例,原数据集文件格式如下:

链接:https://pan.baidu.com/s/1H5vsla6vD4yJpGGJD3ECEA 
提取码:fz4r

重新混合数据集的代码如下:

import os
import shutil
import random
from sklearn.model_selection import train_test_split

# 定义数据集路径
data_path = r'D:\BaiduNetdiskDownload\UA-DETRAC_yolo'
train_images_path = os.path.join(data_path, r'D:\BaiduNetdiskDownload\UA-DETRAC_yolo\UA-DETRAC_train', 'images')
train_labels_path = os
<think>好的,我现在需要帮助用户了解UA-DETRAC数据集的下载和使用说明。首先,我要查看用户提供的三个引用内容,看看里面有没有相关的信息。 引用[1]提到数据集包含8250个车辆实例,用于车辆检测,项目地址是https://gitcode.com/Open-source-documentation-tutorial/e11e5。这可能包含下载链接和文档。引用[2]补充了数据集有10900张图片,标注了四个类别,并且用于训练鲁棒的检测模型。引用[3]说明数据集在车牌识别中的应用,整合了BDD100K-MOT和UA-DETRAC的数据,用于车辆跟踪模型。 用户的问题是关于UA-DETRAC的下载和使用说明。首先,我需要确认是否有直接的下载链接。根据引用[1]中的项目地址,这个链接可能是下载或文档的入口。然后,使用说明方面,引用[3]提到使用方法,但具体步骤可能需要查看文档。 接下来,我需要将这些信息组织起来,分步骤回答用户。下载说明部分需要指出项目地址,可能包含下载方式,如Git仓库克隆或直接下载。使用说明需要涵盖数据集的类别、标注信息、应用场景,以及可能的数据预处理和增强方法,如引用[2]提到的数据增强技术。此外,车牌识别的应用部分也要提到,如引用[3]中的模型使用。 还需要注意用户可能需要的其他信息,比如数据格式、标注工具的使用,或者如何整合到现有项目中。如果文档中有这些内容,应一并说明。同时,确保回答结构清晰,分点列出下载步骤和使用场景,并生成相关问题。 最后,检查是否符合系统级指令:使用正确的中文,LaTeX格式无误,添加引用标识,生成相关问题。确保所有数学表达式用$...$,独立公式用$$...$$,但当前内容可能较少涉及数学,所以可能不需要。但如果有的话,比如性能指标中的数值,可能需要使用。</think>### UA-DETRAC数据集下载与使用说明 #### 一、数据集下载 1. **官方地址** 根据引用[1],UA-DETRAC数据集的项目地址为: https://gitcode.com/Open-source-documentation-tutorial/e11e5 该页面可能提供直接下载链接或通过Git仓库克隆获取数据集。若需详细步骤,建议查看项目页面的README文档[^1]。 2. **数据内容** - 包含8250个车辆实例,覆盖多种交通场景 - 总计10900张图片,标注类别包括:汽车(car)、公共汽车(bus)、面包车(vans)和其他(others)[^2] - 包含不同光照条件、车辆旋转等复杂场景,适用于鲁棒性测试 #### 二、使用说明 1. **核心用途** - **车辆检测与跟踪**:整合了BDD100K-MOT和UA-DETRAC的车辆数据,合并为`vehicle(1)`类别,支持车辆跟踪模型训练[^3] - **车牌识别**:与PP-OCRv3模型结合,可应用于车辆出入口自动闸机等场景[^3] - **行为分析**:如引用[2]中的人体摔倒检测实验,通过数据增强提升泛化能力 2. **数据处理建议** - **数据增强**:随机旋转、缩放、裁剪、颜色变换等(引用[2]推荐方法) - **标注格式**:需适配常见检测框架(如YOLO、Faster R-CNN),具体格式需参考数据集文档 - **性能验证**:建议划分训练集(如8639张)和验证集(如2231张)进行模型评估 #### 三、典型应用示例(引用[3]) ```python # 伪代码示例:PP-Vehicle车牌识别流程 车辆跟踪模型.load("PPVehicle_UA-DETRAC_weights") 车牌检测模型.load("PP-OCRv3_finetuned") for frame in video_stream: vehicles = 跟踪模型.detect(frame) for vehicle in vehicles: license_plate = 车牌检测模型.recognize(vehicle.roi) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值