因为在UA-DETRAC数据集中,训练集和测试集是不同路口处的相机拍摄得到的结果,训练集和测试集间的差别比较大,单纯使用训练集训练后用测试集进行测试,效果不会太好,亲测用yolov5训练map只能到50左右。
总之效果不是太好,不清楚论文中大佬map可以到90多怎么来的,所以自己重新清洗了数据,把train和test混在一起,然后重新分配8:2比例,原数据集文件格式如下:
链接:https://pan.baidu.com/s/1H5vsla6vD4yJpGGJD3ECEA
提取码:fz4r
重新混合数据集的代码如下:
import os
import shutil
import random
from sklearn.model_selection import train_test_split
# 定义数据集路径
data_path = r'D:\BaiduNetdiskDownload\UA-DETRAC_yolo'
train_images_path = os.path.join(data_path, r'D:\BaiduNetdiskDownload\UA-DETRAC_yolo\UA-DETRAC_train', 'images')
train_labels_path = os